
The Pythagorean
Theorem

Crown Jewel of Mathematics

3

4

5

John C. Sparks 





The Pythagorean
Theorem

Crown Jewel of Mathematics

By John C. Sparks



2

The Pythagorean Theorem
Crown Jewel of Mathematics

Copyright © 2008
John C. Sparks

All rights reserved. No part of this book may be reproduced 
in any form—except for the inclusion of brief quotations in a 
review—without permission in writing from the author or 
publisher. Front cover, Pythagorean Dreams, a composite 
mosaic of historical Pythagorean proofs. Back cover photo by 
Curtis Sparks

ISBN: XXXXXXXXX

First Published by Author House XXXXX

Library of Congress Control Number XXXXXXXX

Published by AuthorHouse
1663 Liberty Drive, Suite 200
Bloomington, Indiana 47403

(800)839-8640
www.authorhouse.com

Produced by Sparrow-Hawke †reasures
Xenia, Ohio 45385

Printed in the United States of America



3

Dedication

I would like to dedicate The Pythagorean Theorem to:
Carolyn Sparks, my wife, best friend, and life partner for

40 years; our two grown sons, Robert and Curtis;
My father, Roscoe C. Sparks (1910-1994).

From Earth with Love

Do you remember, as do I,
When Neil walked, as so did we,
On a calm and sun-lit sea
One July, Tranquillity,
Filled with dreams and futures?

For in that month of long ago,
Lofty visions raptured all
Moonstruck with that starry call
From life beyond this earthen ball...
Not wedded to its surface.

But marriage is of dust to dust
Where seasoned limbs reclaim the ground
Though passing thoughts still fly around
Supernal realms never found
On the planet of our birth.

And I, a man, love you true,
Love as God had made it so,
Not angel rust when then aglow,
But coupled here, now rib to soul,
Dear Carolyn of mine.

July 2002: 33rd Wedding Anniversary



4
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Preface

The Pythagorean Theorem has been with us for over 4000 
years and has never ceased to yield its bounty to mathematicians, 
scientists, and engineers. Amateurs love it in that most new proofs 
are discovered by amateurs. Without the Pythagorean Theorem, 
none of the following is possible: radio, cell phone, television, 
internet, flight, pistons, cyclic motion of all sorts, surveying and 
associated infrastructure development, and interstellar 
measurement. The Pythagorean Theorem, Crown Jewel of Mathematics
chronologically traces the Pythagorean Theorem from a 
conjectured beginning, Consider the Squares (Chapter 1), through 
4000 years of Pythagorean proofs, Four Thousand Years of Discovery
(Chapter 2), from all major proof categories, 20 proofs in total. 
Chapter 3, Diamonds of the Same Mind, presents several 
mathematical results closely allied to the Pythagorean Theorem 
along with some major Pythagorean “spin-offs” such as 
Trigonometry. Chapter 4, Pearls of Fun and Wonder, is a potpourri of 
classic puzzles, amusements, and applications. An Epilogue, The 
Crown and the Jewels, summarizes the importance of the 
Pythagorean Theorem and suggests paths for further exploration. 
Four appendices service the reader: A] Greek Alphabet, B] 
Mathematical Symbols, C] Geometric Foundations, and D] References. 
For the reader who may need a review of elementary geometric 
concepts before engaging this book, Appendix C is highly 
recommended. A Topical Index completes the book.

A Word on Formats and Use of Symbols

One of my interests is poetry, having written and 
studied poetry for several years now. If you pick up a 
textbook on poetry and thumb the pages, you will see 
poems interspersed between explanations, explanations 
that English professors will call prose. Prose differs from 
poetry in that it is a major subcategory of how language is 
used. Even to the casual eye, prose and poetry each have a 
distinct look and feel. 
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So what does poetry have to do with mathematics? 
Any mathematics text can be likened to a poetry text. In it, 
the author is interspersing two languages: a language of 
qualification (English in the case of this book) and a 
language of quantification (the universal language of 
algebra).  The way these two languages are interspersed is 
very similar to that of the poetry text.  When we are 
describing, we use English prose interspersed with an 
illustrative phrase or two of algebra. When it is time to do 
an extensive derivation or problem-solving activity—using 
the concise algebraic language—then the whole page (or two 
or three pages!) may consist of nothing but algebra. Algebra 
then becomes the alternate language of choice used to 
unfold the idea or solution. The Pythagorean Theorem follows 
this general pattern, which is illustrated below by a 
discussion of the well-known quadratic formula.  



Let 02  cbxax be a quadratic equation written 
in the standard form as shown with 0a . Then 

02  cbxax has two solutions (including complex and 
multiple) given by the formula below, called the quadratic 
formula.

a

acbb
x

2

42 
 .

To solve a quadratic equation, using the quadratic formula, 
one needs to apply the following four steps considered to be 
a solution process.

1. Rewrite the quadratic equation in standard form.
2. Identify the two coefficients and constant 

term cba ,&, .

3. Apply the formula and solve for the two x values.
4. Check your two answers in the original equation.

To illustrate this four-step process, we will solve the 

quadratic equation 7132 2  xx .
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07132

7132:
2

2
1





xx

xx

 ****

7,13,2:
2

 cba
 ****

}7,{
4

1513

4

22513

4

5616913

)2(2

)7)(2(4)13()13(
:

2
1

23





















x

x

x

x

 ****

:
4

  This step is left to the reader.



Taking a look at the text between the two happy-face 
symbols  , we first see the usual mixture of algebra and 
prose common to math texts. The quadratic formula itself, 
being a major algebraic result, is presented first as a stand-
alone result. If an associated process, such as solving a 
quadratic equation, is best described by a sequence of 
enumerated steps, the steps will be presented in indented, 
enumerated fashion as shown. Appendix B provides a 
detailed list of all mathematical symbols used in this book 
along with explanations.

Regarding other formats, italicized 9-font text is 
used throughout the book to convey special cautionary 
notes to the reader, items of historical or personal interest, 
etc. Rather than footnote these items, I have chosen to 
place them within the text exactly at the place where they 
augment the overall discussion.
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Lastly, throughout the book, the reader will notice a three-
squared triangular figure at the bottom of the page. One 
such figure signifies a section end; two, a chapter end; and 
three, the book end.
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No book such as this is an individual effort. Many 
people have inspired it: from concept to completion. 
Likewise, many people have made it so from drafting to 
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Armstrong, and the like—thank you all for inspiring an 
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themselves. 

To my two editors, Curtis and Stephanie Sparks, 
thank you for helping the raw material achieve full 
publication. This has truly been a family affair. 

To my wife Carolyn, the Heart of it All, what can I 
say. You have been my constant and loving partner for 
some 40 years now. You gave me the space to complete this 
project and rejoiced with me in its completion. As always, 
we are a proud team!

John C. Sparks
October 2008
Xenia, Ohio
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1) Consider the Squares

“If it was good enough for old Pythagoras,
It is good enough for me.” Unknown

How did the Pythagorean Theorem come to be a 
theorem? Having not been trained as mathematical 
historian, I shall leave the answer to that question to those 
who have. What I do offer in Chapter 1 is a speculative, 
logical sequence of how the Pythagorean Theorem might 
have been originally discovered and then extended to its 
present form. Mind you, the following idealized account
describes a discovery process much too smooth to have 
actually occurred through time.  Human inventiveness in 
reality always has entailed plenty of dead ends and false 
starts. Nevertheless, in this chapter, I will play the role of 
the proverbial Monday-morning quarterback and execute a 
perfect play sequence as one modern-day teacher sees it.

Figure 1.1: The Circle, Square, and Equilateral Triangle

Of all regular, planar geometric figures, the square 
ranks in the top three for elegant simplicity, the other two 
being the circle and equilateral triangle, Figure 1.1. All 
three figures would be relatively easy to draw by our distant 
ancestors: either freehand or, more precisely, with a stake 
and fixed length of rope.
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For this reason, I would think that the square would be one 
of the earliest geometrics objects examined.

Note: Even in my own early-sixties high-school days, string, chalk, 
and chalk-studded compasses were used to draw ‘precise’ 
geometric figures on the blackboard. Whether or not this ranks me 
with the ancients is a matter for the reader to decide.  

So, how might an ancient mathematician study a 
simple square? Four things immediately come to my 
modern mind: translate it (move the position in planar 
space), rotate it, duplicate it, and partition it into two 
triangles by insertion of a diagonal as shown in Figure 1.2.

Figure 1.2: Four Ways to Contemplate a Square

I personally would consider the partitioning of the square to 
be the most interesting operation of the four in that I have 
generated two triangles, two new geometric objects, from 
one square. The two right-isosceles triangles so generated 
are congruent—perfect copies of each other—as shown on 
the next page in Figure 1.3 with annotated side lengths
s and angle measurements in degrees.

Translate

Partition

My 
Square

RotateReplicate
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Figure 1.3: One Square to Two Triangles

For this explorer, the partitioning of the square into perfect 
triangular replicates would be a fascination starting point 
for further exploration. Continuing with our speculative 
journey, one could imagine the replication of a partitioned 
square with perhaps a little decorative shading as shown in 
Figure 1.4. Moreover, let us not replicate just once, but 
four times.

Figure 1.4: One Possible Path to Discovery

1



2


3



4


5



s

ss

s

090

090
045 045

045
045
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Now, continue to translate and rotate the four replicated, 
shaded playing piece pieces as if working a jigsaw puzzle. 
After spending some trial-and-error time—perhaps a few 
hours, perhaps several years—we stop to ponder a 
fascinating composite pattern when it finally meanders into 
view, Step 5 in Figure 1.4.

Note: I have always found it very amusing to see a concise and 
logical textbook sequence [e.g. the five steps shown on the previous 
page] presented in such a way that a student is left to believe that 
this is how the sequence actually happened in a historical context. 
Recall that Thomas Edison had four-thousand failures before finally 
succeeding with the light bulb. Mathematicians are no less prone to 
dead ends and frustrations!

Since the sum of any two acute angles in any one of 

the right triangles is again 090 , the lighter-shaded figure 
bounded by the four darker triangles (resulting from Step 4) 
is a square with area double that of the original square. 
Further rearrangement in Step 5 reveals the fundamental 
Pythagorean sum-of-squares pattern when the three 
squares are used to enclose an empty triangular area 
congruent to each of the eight original right-isosceles 
triangles.

Of the two triangle properties for each little 
triangle—the fact that each was right or the fact that each 
was isosceles—which was the key for the sum of the two 
smaller areas to be equal to the one larger area? Or, were 
both properties needed? To explore this question, we will 
start by eliminating one of the properties, isosceles; in order 
to see if this magical sum-of-squares pattern still holds. 
Figure 1.5 is a general right triangle where the three 
interior angles and side lengths are labeled. 

Figure 1.5: General Right Triangle

A

B

C






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Notice that the right-triangle property implies that the sum 
of the two acute interior angles equals the right angle as 
proved below.















0

0

0

90

90

&180

Thus, for any right triangle, the sum of the two acute angles 

equals the remaining right angle or 090 ; eloquently stated 

in terms of Figure 1.5 as   .

Continuing our exploration, let’s replicate the 
general right triangle in Figure 1.5 eight times, dropping all 
algebraic annotations. Two triangles will then be fused 
together in order to form a rectangle, which is shaded via 
the same shading scheme in Figure 1.4. Figure 1.6 shows 
the result, four bi-shaded rectangles mimicking the four bi-
shaded squares in Figure 1.4.

Figure 1.6: Four Bi-Shaded Congruent Rectangles 

With our new playing pieces, we rotate as before, finally 
arriving at the pattern shown in Figure 1.7.
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Figure 1.7: A Square Donut within a Square

That the rotated interior quadrilateral—the ‘square donut’—
is indeed a square is easily shown. Each interior corner 
angle associated with the interior quadrilateral is part of a 

three-angle group that totals 0180 . The two acute angles 

flanking the interior corner angle sum to 090  since these 
are the two different acute angles associated with the right 
triangle. Thus, simple subtraction gives the measure of any 

one of the four interior corners as  090 . The four sides of 
the quadrilateral are equal in length since they are simply 
four replicates of the hypotenuse of our basic right triangle. 
Therefore, the interior quadrilateral is indeed a square 
generated from our basic triangle and  its hypotenuse.  

Suppose we remove the four lightly shaded playing 
pieces and lay them aside as shown in Figure 1.8. 

Figure 1.8: The Square within the Square is Still There
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The middle square (minus the donut hole) is still plainly 
visible and nothing has changed with respect to size or 
orientation. Moreover, in doing so, we have freed up four 
playing pieces, which can be used for further explorations.

If we use the four lighter pieces to experiment with 
different ways of filling the outline generated by the four 
darker pieces, an amazing discover will eventually manifest 
itself—again, perhaps after a few hours of fiddling and 
twiddling or, perhaps after several years—Figure 1.9.  

Note: To reiterate, Thomas Edison tried 4000 different light-bulb 
filaments before discovering the right material for such an 
application.

Figure 1.9: A Discovery Comes into View

That the ancient discovery is undeniable is plain from 
Figure 1.10 on the next page, which includes yet another 
pattern and, for comparison, the original square shown in 
Figure 1.7 comprised of all eight playing pieces. The 12th

century Indian mathematician Bhaskara was alleged to 
have simply said, “Behold!” when showing these diagrams 
to students. Decoding Bhaskara’s terseness, one can create 
four different, equivalent-area square patterns using eight 
congruent playing pieces. Three of the patterns use half of 
the playing pieces and one uses the full set. Of the three 
patterns using half the pieces, the sum of the areas for the 
two smaller squares equals the area of the rotated square in 
the middle as shown in the final pattern with the three 
outlined squares.
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Figure 1.10: Behold!

Phrasing Bhaskara’s “proclamation” in modern algebraic 
terms, we would state the following:

The Pythagorean Theorem

Suppose we have a right triangle with side lengths
and angles labeled as shown below.

Then    and 
222 CBA  

A

B

C






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Our proof in Chapter 1 has been by visual inspection and 
consideration of various arrangements of eight triangular 
playing pieces. I can imagine our mathematically minded  
ancestors doing much the same thing some three to four 
thousand years ago when this theorem was first discovered 
and utilized in a mostly pre-algebraic world. 

To conclude this chapter, we need to address one 
loose end. Suppose we have a non-right triangle. Does the 
Pythagorean Theorem still hold? The answer is a 
resounding no, but we will hold off proving what is known 
as the converse of the Pythagorean Theorem, 

  222 CBA , until Chapter 2. However, we 

will close Chapter 1 by visually exploring two extreme cases 

where non-right angles definitely imply that 222 CBA  .

Figure 1.11: Extreme Differences Versus
Pythagorean Perfection

Pivot Point to Perfection Below
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In Figure 1.11, the lightly shaded squares in the upper 
diagram form two equal sides for two radically different 
isosceles triangles. One isosceles triangle has a large central 
obtuse angle and the other isosceles triangle has a  small 
central acute angle. For both triangles, the darker shaded 
square is formed from the remaining side. It is obvious to 
the eye that two light areas do not sum to a dark area no 
matter which triangle is under consideration. By way of 
contrast, compare the upper diagram to the lower diagram 
where an additional rotation of the lightly shaded squares 
creates two central right angles and the associated 
Pythagorean perfection.

Euclid Alone Has Looked on Beauty Bare

Euclid alone has looked on Beauty bare.
Let all who prate of Beauty hold their peace,
And lay them prone upon the earth and cease
To ponder on themselves, the while they stare
At nothing, intricately drawn nowhere
In shapes of shifting lineage; let geese
Gabble and hiss, but heroes seek release
From dusty bondage into luminous air.

O blinding hour, O holy, terrible day,
When first the shaft into his vision shown
Of light anatomized! Euclid alone
Has looked on Beauty bare. Fortunate they
Who, though once and then but far away,
Have heard her massive sandal set on stone.

Edna St. Vincent Millay
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2) Four Thousand Years of Discovery

Consider old Pythagoras,
A Greek of long ago,
And all that he did give to us,
Three sides whose squares now show

In houses, fields and highways straight;
In buildings standing tall;
In mighty planes that leave the gate;
And, micro-systems small.

Yes, all because he got it right
When angles equal ninety—
One geek (BC), his plain delight—
One world changed aplenty! January 2002

2.1) Pythagoras and the First Proof

Pythagoras was not the first in antiquity to know 
about the remarkable theorem that bears his name, but he 
was the first to formally prove it using deductive geometry 
and the first to actively ‘market’ it (using today’s terms) 
throughout the ancient world.  One of the earliest indicators 
showing knowledge of the relationship between right 
triangles and side lengths is a hieroglyphic-style picture, 
Figure 2.1, of a knotted rope having twelve equally-spaced 
knots.

Figure 2.1: Egyptian Knotted Rope, Circa 2000 BCE
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The rope was shown in a context suggesting its use as a 
workman’s tool for creating right angles, done via the 
fashioning of a 3-4-5 right triangle. Thus, the Egyptians 
had a mechanical device for demonstrating the converse of 
the Pythagorean Theorem for the 3-4-5 special case:

0222 90543   .

Not only did the Egyptians know of specific 
instances of the Pythagorean Theorem, but also the 
Babylonians and Chinese some 1000 years before 
Pythagoras definitively institutionalized the general result 
circa 500 BCE. And to be fair to the Egyptians, Pythagoras 
himself, who was born on the island of Samos in 572 BCE, 
traveled to Egypt at the age of 23 and spent 21 years there 
as a student before returning to Greece. While in Egypt, 
Pythagoras studied a number of things under the guidance 
of Egyptian priests, including geometry. Table 2.1 briefly 
summarizes what is known about the Pythagorean Theorem 
before Pythagoras.

Date Culture Person Evidence

2000 
BCE

Egyptian Unknown
Workman’s rope for 

fashioning a
3-4-5 triangle

1500 
BCE

Babylonian
& 

Chaldean
Unknown

Rules for right 
triangles written on 
clay tablets along 

with geometric 
diagrams

1100 
BCE

Chinese
Tschou-

Gun

Written geometric 
characterizations of 

right angles

520
BCE

Greek Pythagoras
Generalized result 
and deductively 

proved

Table 2.1: Prior to Pythagoras
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The proof Pythagoras is thought to have actually 
used is shown in Figure 2.2. It is a visual proof in that no 
algebraic language is used to support numerically the 
deductive argument. In the top diagram, the ancient 
observer would note that removing the eight congruent right 
triangles, four from each identical master square, brings the 
magnificent sum-of-squares equality into immediate view.

Figure 2.2: The First Proof by Pythagoras




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Figure 2.3 is another original, visual proof 
attributed to Pythagoras. Modern mathematicians would 
say that this proof is more ‘elegant’ in that the same 
deductive message is conveyed using one less triangle. Even 
today, ‘elegance’ in proof is measured in terms of logical 
conciseness coupled with the amount insight provided by 
the conciseness. Without any further explanation on my 
part, the reader is invited to engage in the mental deductive 
gymnastics needed to derive the sum-of-squares equality 
from the diagram below.

Figure 2.3: An Alternate Visual Proof by Pythagoras

Neither of Pythagoras’ two visual proofs requires the 
use of an algebraic language as we know it. Algebra in its 
modern form as a precise language of numerical 
quantification wasn’t fully developed until the Renaissance. 
The branch of mathematics that utilizes algebra to facilitate 
the understanding and development of geometric concepts 
is known as analytic geometry. Analytic geometry allows for 
a deductive elegance unobtainable by the use of visual 
geometry alone. Figure 2.4 is the square-within-the-square 
(as first fashioned by Pythagoras) where the length of each 
triangular side is algebraically annotated just one time.
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Figure 2.4: Annotated Square within a Square

The proof to be shown is called a dissection proof due to the 
fact that the larger square has been dissected into five 
smaller pieces. In all dissection proofs, our arbitrary right 
triangle, shown on the left, is at least one of the pieces. One 
of the two keys leading to a successful dissection proof is 
the writing of the total area in two different algebraic ways: 
as a singular unit and as the sum of the areas associated 
with the individual pieces. The other key is the need to 
utilize each critical right triangle dimension—a, b, c—at 
least once in writing the two expressions for area. Once the 
two expressions are written, algebraic simplification will 
lead (hopefully) to the Pythagorean Theorem. Let us start 
our proof. The first step is to form the two expressions for 
area.
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&)(:
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2
1

abcA

AAA

baA

bigsquare

eonetrianglrelittlesquabigsquare

bigsquare







The second step is to equate these expressions and 
algebraically simplify.


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Notice how quickly and easily our result is obtained once 
algebraic is used to augment the geometric picture. Simply 
put, algebra coupled with geometry is superior to geometry 
alone in quantifying and tracking the diverse and subtle 
relationships between geometric whole and the assorted 
pieces. Hence, throughout the remainder of the book, 
analytic geometry will be used to help prove and develop 
results as much as possible.

Since the larger square in Figure 2.4 is dissected 
into five smaller pieces, we will say that this is a Dissection 
Order V (DRV) proof. It is a good proof in that all three 
critical dimensions—a, b, c—and only these dimensions are 
used to verify the result. This proof is the proof most 
commonly used when the Pythagorean Theorem is first 
introduced. As we have seen, the origins of this proof can be 
traced to Pythagoras himself.

We can convey the proof in simpler fashion by 
simply showing the square-within-the-square diagram 
(Figure 2.5) and the associated algebraic development 
below unencumbered by commentary. Here forward, this 
will be our standard way of presenting smaller and more 
obvious proofs and/or developments.

Figure 2.5: Algebraic Form of the First Proof







222222

2
122

2

2
122

1

22

)(4)(:

)(4&)(:

cbaabcbaba

abcba

abcAbaA
set





c

a

b
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Figure 2.6 is the diagram for a second not-so-obvious 
dissection proof where a rectangle encloses the basic right 
triangle as shown. The three triangles comprising the 
rectangle are similar (left to reader to show), allowing the 
unknown dimensions x, y, z to be solved via similarity 
principles in terms of a, b, and c. Once we have x, y, and z
in hand, the proof proceeds as a normal dissection.

Figure 2.6: A Rectangular Dissection Proof
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As the reader can immediately discern, this proof, a 
DRIII, is not visually apparent. Algebra must be used along 
with the diagram in order to quantify the needed 
relationships and carry the proof to completion.

Note: This is not a good proof for beginning students—say your 
average eighth or ninth grader—for two reasons. One, the algebra is 
somewhat extensive. Two, derived and not intuitively obvious 
quantities representing various lengths are utilized to formulate the 
various areas. Thus, the original Pythagorean proof remains 
superior for introductory purposes.

Our last proof in this section is a four-step DRV
developed by a college student, Michelle Watkins (1997), 
which also requires similarity principles to carry the proof 
to completion. Figure 2.7 shows our two fundamental, 
congruent right triangles where a heavy dashed line 
outlines the second triangle. The lighter dashed line 
completes a master triangle ABC  for which we will 
compute the area two using different methods. The reader is 
to verify that each right triangle created by the merger of the 
congruent right triangles is similar to the original right 
triangle.

Step 1 is to compute the length of line segment x
using similarity principles. The two distinct area 
calculations in Steps 2 and 3 result from viewing the master 
triangle as either ABC  or CBA . Step 4 sets the equality 
and completes the proof.

Figure 2.7: Twin Triangle Proof
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b
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A B

C
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One of the interesting features of this proof is that 
even though it is a DRV, the five individual areas were not 
all needed in order to compute the area associated with 
triangle ABC in two different ways. However, some areas 
were critical in a construction sense in that they allowed for 
the determination of the critical parameter x. Other areas 
traveled along as excess baggage so to speak.  Hence, we 
could characterize this proof as elegant but a tad inefficient.
However, our Twin Triangle Proof did allow for the 
introduction of the construction principle, a principle that 
Euclid exploited fully in his great Windmill Proof, the 
subject of our next section.



36

2.2) Euclid’s Wonderful Windmill

Euclid, along with Archimedes and Apollonius, is 
considered one of the three great mathematicians of 
antiquity. All three men were Greeks, and Euclid was the 
earliest, having lived from approximately 330BCE to 
275BCE. Euclid was the first master mathematics teacher 
and pedagogist. He wrote down in logical systematic fashion 
all that was known about plane geometry, solid geometry, 
and number theory during his time. The result is a treatise 
known as The Elements, a work that consists of 13 books 
and 465 propositions. Euclid’s The Elements is one of most 
widely read books of all times. Great minds throughout 
twenty-three centuries (e.g. Bertrand Russell in the 20th

century) have been initiated into the power of critical 
thinking by its wondrous pages.

Figure 2.8: Euclid’s Windmill without Annotation



37

Euclid’s proof of the Pythagorean Theorem (Book 1, 
Proposition 47) is commonly known as the Windmill Proof 
due to the stylized windmill appearance of the associated 
intricate geometric diagram, Figure 2.8.

Note: I think of it as more Art Deco.

There is some uncertainty whether or not Euclid was 
the actual originator of the Windmill Proof, but that is really 
of secondary importance. The important thing is that Euclid 
captured it in all of elegant step-by-step logical elegance via 
The Elements. The Windmill Proof is best characterized as a 
construction proof as apposed to a dissection proof. In 
Figure 2.8, the six ‘extra’ lines—five dashed and one solid—
are inserted to generate additional key geometric objects 
within the diagram needed to prove the result. Not all 
geometric objects generated by the intersecting lines are 
needed to actualize the proof. Hence, to characterize the 
associated proof as a DRXX (the reader is invited to verify 
this last statement) is a bit unfair. 

How and when the Windmill Proof first came into 
being is a topic for historical speculation.  Figure 2.9
reflects my personal view on how this might have happened.

Figure 2.9: Pondering Squares and Rectangles
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First, three squares were constructed, perhaps by 
the old compass and straightedge, from the three sides of 
our standard right triangle as shown in Figure 2.9. The 
resulting structure was then leveled on the hypotenuse 
square in a horizontal position. The stroke of intuitive 
genius was the creation of the additional line emanating 
from the vertex angle and parallel to the vertical sides of the 
square. So, with this in view, what exactly was the beholder 
suppose to behold?

My own intuition tells me that two complimentary 
observations were made: 1) the area of the lightly-shaded 
square and rectangle are identical and 2) the area of the 
non-shaded square and rectangle are identical. Perhaps 
both observations started out as nothing more than a 
curious conjecture. However, subsequent measurements for 
specific cases turned conjecture into conviction and
initiated the quest for a general proof. Ancient Greek genius 
finally inserted (period of time unknown) two additional 
dashed lines and annotated the resulting diagram as shown 
in Figure 2.10. Euclid’s proof follows on the next page.

Figure 2.10: Annotated Windmill
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First we establish that the two triangles IJD and GJA are 
congruent.

)(2)(2

)()(
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,&,:

2
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GJAAreaIJDArea

GJAAreaIJDArea

GJAIJD

GJAIJD

GJAIJDJAJDJGIJ
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






The next step is to establish that the area of the square 
IJGH is double the area of IJD . This is done by carefully 
observing the length of the base and associated altitude for 
each. Equivalently, we do a similar procedure for rectangle 
JABK and GJA .
Thus: 

)()(:

)(2)(:

)(2)(:
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3

JABKAreaIJGHArea

GJAAreaJABKArea

IJDAreaIJGHArea


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







.

The equivalency of the two areas associated with the square 
GDEF and rectangle BCDK is established in like fashion 
(necessitating the drawing of two more dashed lines as 
previously shown in Figure 2.8). With this last result, we 
have enough information to bring to completion Euclid’s 
magnificent proof.






)()()(

)()(

)()(:
6

ACDJAreaGDEFAreaIJGHArea

BCDKAreaJABKArea

GDEFAreaIJGHArea

Modern analytic geometry greatly facilitates Euclid’s 
central argument. Figure 2.11 is a much-simplified 
windmill with only key dimensional lengths annotated.



40

Figure 2.11: Windmill Light

The analytic-geometry proof below rests on the 
central fact that the two right triangles created by the 
insertion of the perpendicular bisector are both similar to 
the original right triangle. First, we establish the equality of 
the two areas associated with the lightly shaded square and 
rectangle via the following logic sequence:
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Likewise, for the non-shaded square and rectangle:
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Putting the two pieces together (quite literally), we have:




222222

2
1

:

cbabac

cAbigsquare .

The reader probably has discerned by now that 
similarity arguments play a key role in many proofs of the 
Pythagorean Theorem. This is indeed true. In fact, proof by 
similarity can be thought of a major subcategory just like 
proof by dissection or proof by construction. Proof by 
visualization is also a major subcategory requiring crystal-
clear, additive dissections in order to make the Pythagorean 
Theorem visually obvious without the help of analytic 
geometry.  Similarity proofs were first exploited in wholesale 
fashion by Legendre, a Frenchman that had the full power 
of analytic geometry at his disposal. In Section 2.7, we will 
further reduce Euclid’s Windmill to its primal bare-bones 
form via similarity as first exploited by Legendre.

Note: More complicated proofs of the Pythagorean Theorem usually 
are a hybrid of several approaches. The proof just given can be 
thought of as a combination of construction, dissection, and 
similarity. Since similarity was the driving element in forming the 
argument, I would primarily characterize it as a similarity proof. 
Others may characteristic it as a construction proof since no 
argument is possible without the insertion of the perpendicular 
bisector. Nonetheless, creation of a perpendicular bisection creates a 
dissection essential to the final addition of squares and rectangles! 
Bottom line: all things act together in concert.  
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We close this section with a complete restatement of the 
Pythagorean Theorem as found in Chapter 2, but now with 
the inclusion of the converse relationship

0222 90 CBA . Euclid’s subtle proof of the 

Pythagorean Converse follows (Book 1 of The Elements, 
Proposition 48).

The Pythagorean Theorem and
Pythagorean Converse

Suppose we have a triangle with side lengths
and angles labeled as shown below.

Then: 222 CBA  

Figure 2.12 on the next page shows Euclid’s original 
construction used to prove the Pythagorean Converse. The 
shaded triangle conforms to the hypothesis 

where 222 CBA  by design. From the intentional design, 

one is to show or deduce that   090  in order 

to prove the converse.

Note: the ancients and even some of my former public-school 
teachers would have said ‘by construction’ instead of ‘by design.’ 
However, the year is 2008, not 1958, and the word design seems to 
be a superior conveyor of the intended meaning.

A

B

C






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Figure 2.12: Euclid’s Converse Diagram

Euclid’s first step was to construct a line segment of 
length 'B  where BB ' . Then, this line segment was joined 
as shown to the shaded triangle in such a fashion that the 

corner angle that mirrors   was indeed a right angle of 090
measure—again by design! Euclid then added a second line 
of unknown length X in order to complete a companion 
triangle with common vertical side as shown in Figure 
2.12. Euclid finally used a formal verbally-descriptive logic 
stream quite similar to the annotated algebraic logic stream 
below in order to complete his proof. 

Algebraic Logic Verbal Annotation
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2
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   XABABC ':
6

 6] The three corresponding 
sides are equal in length (SSS)

   0
7

90:  7] The triangles ABC  and 

XAB'  are congruent
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
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0
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18090

180:

8] Properties of algebraic 
equality 

We close this section by simply admiring the simple and 
profound algebraic symmetry of the Pythagorean Theorem 
and its converse as ‘chiseled’ below 

222 CBA  
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




A
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2.3) Liu Hui Packs the Squares

Liu Hui was a Chinese philosopher and 
mathematician that lived in the third century ACE. By that 
time, the great mathematical ideas of the Greeks would 
have traveled the Silk Road to China and visa-versa, with 
the cross-fertilization of two magnificent cultures enhancing 
the further global development of mathematics. As just 
described, two pieces of evidence strongly suggest that 
indeed this was the case.

Figure 2.13 is Liu Hui’s exquisite diagram 
associated with his visual proof of the Pythagorean 
Theorem.

Figure 2.13: Liu Hui’s Diagram with Template
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In it, one clearly sees the Greek influence of Pythagoras and 
Euclid. However, one also sees much, much more: a more 
intricate and clever visual demonstration of the 
‘Pythagorean Proposition’ than those previously 
accomplished.

Note: Elisha Loomis, a fellow Ohioan, whom we shall meet in 
Section 2.10, first used the expression ‘Pythagorean Proposition’ 
over a century ago.

Is Liu Hui’s diagram best characterized as a 
dissection (a humongous DRXIIII not counting the black 
right triangle) or a construction? 

Figure 2.14: Packing Two Squares into One

We will say neither although the diagram has 
elements of both. Liu Hui’s proof is best characterized as a 
packing proof in that the two smaller squares have been 
dissected in such a fashion as to allow them to pack 
themselves into the larger square, Figure 2.14. Some years 
ago when our youngest son was still living at home, we 
bought a Game Boy™ and gave it to him as a Christmas 
present. In time, I took a liking to it due to the nifty puzzle 
games.
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One of my favorites was Boxel™, a game where the player 
had to pack boxes into a variety of convoluted warehouse 
configurations. In a sense, I believe this is precisely what 
Liu Hui did: he perceived the Pythagorean Proposition as a 
packing problem and succeeded to solve the problem by the 
masterful dismemberment and reassembly as shown above. 
In the spirit of Liu Hui, actual step-by-step confirmation of the 
‘packing of the pieces’ is left to the reader as a challenging 
visual exercise. 

Note: One could say that Euclid succeeded in packing two squares 
into two rectangles, the sum of which equaled the square formed on 
the hypotenuse.

So what might have been the origin of Liu Hui’s 
packing idea? Why did Liu Hui use such odd-shaped pieces, 
especially the two obtuse, scalene triangles? Finally, why 
did Liu Hui dissect the three squares into exactly fourteen 
pieces as opposed to twenty? Archimedes (287BCE-
212BCE), a Greek and one of the three greatest 
mathematicians of all time—Isaac Newton and Karl Gauss 
being the other two—may provide some possible answers.

Archimedes is commonly credited (rightly or 
wrongly) with a puzzle known by two names, the 
Archimedes’ Square or the Stomachion, Figure 2.15 on the 
next page. In the Stomachion, a 12 by 12 square grid is 
expertly dissected into 14 polygonal playing pieces where 
each piece has an integral area. Each of the fourteen pieces 
is labeled with two numbers. The first is the number of the 
piece and the second is the associated area. Two views of 
the Stomachion are provided in Figure 2.15, an ‘artist’s 
concept’ followed by an ‘engineering drawing’. I would like 
to think that the Stomachion somehow played a key role in 
Liu Hui’s development of his magnificent packing solution 
to the Pythagorean Proposition. Archimedes’ puzzle could 
have traveled the Silk Road to China and eventually found 
its way into the hands of another ancient and great out-of-
the-box thinker!
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Figure 2.15: The Stomachion Created by Archimedes
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2.4) Kurrah Transforms the Bride’s Chair

Our youngest son loved Transformers™ as a child,
and our oldest son was somewhat fond of them too. For 
those of you who may not remember, a transformer is a 
mechanical toy that can take on a variety of shapes—e.g. 
from truck to robot to plane to boat—depending how you 
twist and turn the various appendages. The idea of 
transforming shapes into shapes is not new, even though 
the 1970s brought renewed interest in the form of highly 
marketable toys for the children of Baby Boomers. Even 
today, a new league of Generation X parents are digging in 
their pockets and shelling out some hefty prices for those 
irresistible Transformers™. 

Thabit ibn Kurrah (836-901), a Turkish-born 
mathematician and astronomer, lived in Baghdad during 
Islam’s Era of Enlightenment paralleling Europe’s Dark 
Ages. Kurrah (also Qurra or Qorra) developed a clever and 
original proof of the Pythagorean Theorem along with a non-
right triangle extension of the same (Section 3.6) Kurrah’s 
proof has been traditionally classified as a dissection proof. 
Then again, Kurrah’s proof can be equally classified as a 
transformer proof. Let’s have a look. 

Figure 2.16: Kurrah Creates the Bride’s Chair


The Bride’s Chair


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Figure 2.16 shows Kurrah’s creation of the Bride’s 
Chair. The process is rather simple, but shows Kurrah’s 
intimate familiarity with our fundamental Pythagorean 
geometric structure on the left. Four pieces comprise the 
basic structure and these are pulled apart and rearranged 
as depicted. The key rearrangement is the one on the top 
right that reassembles the two smaller squares into a new 
configuration known as the bride’s chair. Where the name 
‘Bride’s Chair’ originated is a matter for speculation; 
personally, I think the chair-like structure looks more like a 
Lazy Boy™. 

Now what? Kurrah had a packing problem—two 
little squares to be packed into one big square—which he 
cleverly solved by the following dissection and subsequent 
transformation. Figure 2.17 pictorially captures Kurrah’s 
dilemma, and his key dissection that allowed the 
transformation to proceed.

Figure 2.17: Packing the Bride’s Chair into
The Big Square

What Kurrah did was to replicate the shaded triangle and 
use it to frame two cutouts on the Bride’s Chair as shown. 
Figure 2.18 is ‘Operation Transformation’ showing 
Kurrah’s rotational sequence that leads to a successful 
packing of the large square.



The Bride’s Chair

?

!
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Note: as is the occasional custom in this volume, the reader is asked 
to supply all dimensional details knowing that the diagram is 
dimensionally correct. I am convinced that Kurrah himself would 
have demanded the same.

Figure 2.18:  Kurrah’s Operation Transformation

As Figure 2.18 clearly illustrates, Kurrah took a cleverly 
dissected Bride’s Chair and masterfully packed it into the 
big square though a sequence of rotations akin to those 
employed by the toy Transformers™ of today—a 
demonstration of pure genius!  

P is a fixed
pivot point



!P



!P

P

!

P

P

P
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The Bride’s Chair and Kurrah’s subsequent 
dissection has long been the source for a little puzzle that 
has found its way into American stores for at least forty 
years. I personally dub this puzzle ‘The Devil’s Teeth’, 
Figure 2.19. As one can see, it nothing more than the 
Bride’s Chair cut into four pieces, two of which are identical 
right triangles. The two remaining pieces are arbitrarily cut 
from the residual of the Bride’s Chair. Figure 2.19 depicts
two distinct versions of ‘The Devil’s Teeth’. 

Figure 2.19: ‘The Devil’s Teeth’

The name ‘Devil’s Teeth’ is obvious: the puzzle is a devilish 
one to reassemble. If one adds a little mysticism about the 
significance of the number four, you probably got a winner 
on your hands. In closing, I can imagine Paul Harvey doing a 
radio spot focusing on Kurrah, the Bride’s Chair, and the 
thousand-year-old Transformers™ proof. After the 
commercial break, he describes ‘The Devil’s Teeth’ and the 
successful marketer who started this business out of a 
garage. “And that is the rest of the story. Good day.”

Note: I personally remember this puzzle from the early 1960s.
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2.5) Bhaskara Unleashes the Power of Algebra

We first met Bhaskara in Chapter 2. He was the 12th

century (circa 1115 to 1185) Indian mathematician who 
drew the top diagram shown in Figure 2.20 and simply 
said, “Behold!”, completing his proof of the Pythagorean 
Theorem. However, legend has a way of altering details and 
fish stories often times get bigger. Today, what is commonly 
ascribed to Bhaskara’s “Behold!” is nothing more than the 
non-annotated square donut in the lower diagram. I, for 
one, have a very hard time beholding exactly what I am 
suppose to behold when viewing the non-annotated square 
donut. Appealing to Paul Harvey’s famous radio format a 
second time, perhaps there is more to this story. There is. 
Bhaskara had at his disposal a well-developed algebraic 
language, a language that allowed him to capture precisely 
via analytic geometry those truths that descriptive geometry 
alone could not easily convey.

Figure 2.20: Truth Versus Legend
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What Bhaskara most likely did as an accomplished 
algebraist was to annotate the lower figure as shown again 
in Figure 2.21. The former proof easily follows in a few 
steps using analytic geometry. Finally, we are ready for the 
famous “Behold! as Bhaskara’s magnificent DRV
Pythagorean proof unfolds before our eyes.

Figure 2.21: Bhaskara’s Real Power
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Bhaskara’s proof is minimal in that the large square has 
the smallest possible linear dimension, namely c. It also 
utilizes the three fundamental dimensions—a, b, & c—as 
they naturally occur with no scaling or proportioning. The 
tricky part is size of the donut hole, which Bhaskara’s use 
of analytic geometry easily surmounts. Thus, only one word 
remains to describe this historic first—behold!

a

b

c
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2.6) Leonardo da Vinci’s Magnificent Symmetry

Leonardo da Vinci (1452-1519) was born in 
Anchiano, Italy.  In his 67 years, Leonardo became an 
accomplished painter, architect, designer, engineer, and 
mathematician. If alive today, the whole world would 
recognize Leonardo as ‘world class’ in all the 
aforementioned fields. It would be as if Stephen Hawking 
and Stephen Spielberg were both joined into one person. 
For this reason, Leonardo da Vinci is properly characterized 
as the first and greatest Renaissance man. The world has 
not seen his broad-ranging intellectual equivalent since! 
Thus, it should come as no surprise that Leonardo da Vinci, 
the eclectic master of many disciplines, would have 
thoroughly studied and concocted an independent proof of 
the Pythagorean Theorem.

Figure 2.22 is the diagram that Leonardo used to 
demonstrate his proof of the Pythagorean Proposition. The 
added dotted lines are used to show that the right angle of 
the fundamental right triangle is bisected by the solid line 
joining the two opposite corners of the large dotted square 
enclosing the lower half of the diagram. Alternately, the two 
dotted circles can also be used to show the same (reader 
exercise). 

Figure 2.22: Leonardo da Vinci’s Symmetry Diagram
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Figure 2.23 is the six-step sequence that visually 
demonstrates Leonardo’s proof. The critical step is Step 5 
where the two figures are acknowledged by the observer to 
be equivalent in area. Step 6 immediately follows.

Figure 2.23: Da Vinci’s Proof in Sequence

1


2



3


4



5


6


 
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In Figure 2.24, we enlarge Step 5 and annotate the critical 
internal equalities. Figure 2.24 also depicts the subtle 
rotational symmetry between the two figures by labeling the 
pivot point P for an out-of-plane rotation where the lower 

half of the top diagram is rotated 0180  in order to match 
the bottom diagram. The reader is to supply the supporting 
rationale. While doing so, take time to reflect on the subtle 
and brilliant genius of the Renaissance master—Leonardo
da Vinci! 

Figure 2.24: Subtle Rotational Symmetry


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2.7) Legendre Exploits Embedded Similarity

Adrian Marie Legendre was a well-known French 
mathematician born at Toulouse in 1752. He died at Paris 
in 1833. Along with Lagrange and Laplace, Legendre can be 
considered on of the three fathers of modern analytic 
geometry, a geometry that incorporates all the inherent 
power of both algebra and calculus. With much of his life’s 
work devoted to the new analytic geometry, it should come 
as no surprise that Legendre should be credited with a 
powerful, simple and thoroughly modern—for the time—
new proof of the Pythagorean Proposition. Legendre’s proof 
starts with the Windmill Light (Figure 2.11). Legendre then 
pared it down to the diagram shown in Figure 2.25.

Figure 2.25: Legendre’s Diagram

He then demonstrated that the two right triangles formed by 
dropping a perpendicular from the vertex angle to the 
hypotenuse are both similar to the master triangle. Armed 
with this knowledge, a little algebra finished the job.
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Notice that this is the first proof in our historical sequence 
lacking an obvious visual component.
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But, this is precisely the nature of algebra and analytic 
geometry where abstract ideas are more precisely (and 
abstractly) conveyed than by descriptive (visual) geometry 
alone. The downside is that visual intuition plays a minimal 
role as similarity arguments produce the result via a few 
algebraic pen strokes. Thus, this is not a suitable beginner’s 
proof.

Similarity proofs have been presented throughout 
this chapter, but Legendre’s is historically the absolute 
minimum in terms of both geometric augmentation (the 
drawing of additional construction lines, etc.) and algebraic 
terseness. Thus, it is included as a major milestone in our 
survey of Pythagorean proofs. To summarize, Legendre’s 
proof can be characterized as an embedded similarity proof 
where two smaller triangles are created by the dropping of 
just one perpendicular from the vertex of the master 
triangle. All three triangles—master and the two created—
are mutually similar. Algebra and similarity principles 
complete the argument in a masterful and modern way.

Note: as a dissection proof, Legendre’s proof could be characterized 
as a DRII, but the visual dissection is useless without the powerful 
help of algebra, essential to the completion of the argument.

Not all similarity proofs rely on complicated ratios 

such as cax /2  to evaluate constructed linear 
dimensions in terms of the three primary quantities a, b, & 
c. Figure 2.26 is the diagram recently used (2002) by J. 
Barry Sutton to prove the Pythagorean Proposition using 
similarity principles with minimally altered primary 
quantities.

Figure 2.26 Barry Sutton’s Diagram
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We end Section 2.7 by presenting Barry’s proof in 
step-by-step fashion so that the reader will get a sense of 
what formal geometric logic streams look like, as they are 
found in modern geometry textbooks at the high school or 
college level.

   
1

: Construct right triangle AEC  with sides a, b, c.

   
2

: Construct circle Cb centered at C with radius b.

   
3

: Construct triangle BED  with hypotenuse 2b.

    rightBED
4

: By inscribed triangle theorem since 

the hypotenuse for BED  equals and 
exactly overlays the diameter for Cb

CEDAEB 
5

: The same common angle BEC  is 
subtracted from the right angles 

AEC  and BED

   CDECED 
6

: The triangle CED  is isosceles.

   CDEAEB 
7

: Transitivity of equality

   AEDAEB 
8

: The angle DAE  is common to both 

triangles and CDEAEB  . Hence 
the third angle is equal and similarity 
is assured by AAA.

With the critical geometric similarity firmly established by 
traditional logic, Barry finishes his proof with an algebraic 
coup-de-grace that is typical of the modern approach!
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2.8) Henry Perigal’s Tombstone

Henry Perigal was an amateur mathematician and 
astronomer who spent most of his long life (1801-1898) 
near London, England. Perigal was an accountant by trade, 
but stargazing and mathematics was his passion. He was a 
Fellow of the Royal Astronomical Society and treasurer of 
the Royal Meteorological Society. Found of geometric 
dissections, Perigal developed a novel proof of the 
Pythagorean Theorem in 1830 based on a rather intricate 
dissection, one not as transparent to the casual observer 
when compared to some of the proofs from antiquity. Henry 
must have considered his proof of the Pythagorean Theorem 
to be the crowning achievement of his life, for the diagram 
is chiseled on his tombstone, Figure 2.27. Notice the clever 
use of key letters found in his name: H, P, R, G, and L.

Figure 2.27: Diagram on Henry Perigal’s Tombstone
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In Figure 2.28, we update the annotations used by Henry 
and provide some key geometric information on his overall 
construction.

Figure 2.28: Annotated Perigal Diagram

We are going to leave the proof to the reader as a challenge. 
Central to the Perigal argument is the fact that all eight of 
the constructed quadrilaterals are congruent. This 
immediately leads to fact that the middle square embedded 
in the ‘c’ square is identical to the ‘a’ square from which 

222 cba   can be established.

Perigal’s proof has since been cited as one of the 
most ingenious examples of a proof associated with a 
phenomenon that modern mathematicians call a 
Pythagorean Tiling.
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In the century following Perigal, both Pythagorean Tiling 
and tiling phenomena in general were extensively studied 
by mathematicians resulting in two fascinating discoveries:

1] Pythagorean Tiling guaranteed that the existence of 
countless dissection proofs of the Pythagorean Theorem.
2] Many previous dissection proofs were in actuality simple 
variants of each, inescapably linked by Pythagorean Tiling. 

Gone forever was the keeping count of the number of proofs 
of the Pythagorean Theorem! For classical dissections, the 
continuing quest for new proofs became akin to writing the 
numbers from 567,234,1  to   567,334,1 . People started to 

ask, what is the point other than garnering a potential entry 
in the Guinness Book of World Records?  As we continue 
our Pythagorean journey, keep in mind Henry Perigal, for it 
was he (albeit unknowingly) that opened the door to this 
more general way of thinking.

Note: Elisha Loomis whom we shall meet in Section 2.10, published 
a book in 1927 entitled The Pythagorean Proposition, in which he 
details over 350 original proofs of the Pythagorean Theorem.

We are now going to examine Perigal’s novel proof 
and quadrilateral filling using the modern methods 
associated with Pythagorean Tiling, an example of which is 
shown in Figure 2.29 on the next page. From Figure 2.29, 
we see that three items comprise a Pythagorean Tiling 
where each item is generated, either directly or indirectly, 
from the master right triangle.

1) The Bride’s Chair, which serves as a basic tessellation 
unit when repeatedly drawn.
2) The master right triangle itself, which serves as an 
‘anchor-point’ somewhere within the tessellation pattern.
3) A square cutting grid, aligned as shown with the 
triangular anchor point. The length of each line segment 
within the grid equals the length of the hypotenuse for the 
master triangle. Therefore, the area of each square hole 
equals the area of the square formed on the hypotenuse.
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Figure 2.29: An Example of Pythagorean Tiling

As Figure 2.29 illustrates, the square cutting grid 
immediately visualizes the cuts needed in order to dissect 
and pack the two smaller squares into the hypotenuse 
square, given a particular placement of the black triangle. 
Figure 2.30 shows four different, arbitrary placements of 
the anchor point that ultimately lead to four dissections 
and four proofs once the cutting grid is properly placed. 
Bottom line: a different placement means a different proof!

Figure 2.30: Four Arbitrary Placements of the
Anchor Point
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Returning to Henry Perigal, Figure 2.31 shows the 
anchor placement and associated Pythagorean Tiling 
needed in order to verify his 1830 dissection. Notice how 
the viability of Henry Perigal’s proof and novel quadrilateral 
is rendered immediately apparent by the grid placement. As 
we say in 2008, slick!

Figure 2.31: Exposing Henry’s Quadrilaterals

With Pythagorean Tiling, we can have a thousand different 
placements leading to a thousand different proofs. Should 
we try for a million? Not a problem! Even old Pythagoras 
and Euclid might have been impressed. 
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2.9) President Garfield’s Ingenious Trapezoid

The Ohioan James A. Garfield (1831-1881) was the 
20th president of the United States. Tragically, Garfield’s 
first term in office was cut short by an assassin’s bullet: 
inaugurated on 4 March 1881, shot on 2 July 1881, and 
died of complications on 19 Sept 1881. Garfield came from 
modest Midwestern roots. However, per hard work he was 
able to save enough extra money in order to attend 
William’s College in Massachusetts. He graduated with 
honors in 1856 with a degree in classical studies.  After a 
meteoric stint as a classics professor and (within two years) 
President of Hiram College in Ohio, Garfield was elected to
the Ohio Senate in 1859 as a Republican. He fought in the 
early years of the Civil War and in 1862 obtained the rank 
of Brigadier General at age 31 (achieving a final rank of 
Major General in 1864). However, Lincoln had other plans 
for the bright young Garfield and urged him to run for the 
U.S. Congress. Garfield did just that and served from 1862 
to 1880 as a Republican Congressman from Ohio, 
eventually rising to leading House Republican. 

While serving in the U.S. Congress, Garfield 
fabricated one of the most amazing and simplistic proofs of 
the Pythagorean Theorem ever devised—a dissection proof 
that looks back to the original diagram attributed to 
Pythagoras himself yet reduces the number of playing 
pieces from five to three.

Figure 2.32: President Garfield’s Trapezoid
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Figure 2.32 is President Garfield’s Trapezoid diagram in 
upright position with its origin clearly linked to Figure 2.3. 
Recall that the area of a trapezoid, in particular the area of 
the trapezoid in Figure 2.32, is given by the formula:

  babaATrap  )(2
1 .

Armed with this information, Garfield completes his proof 
with a minimum of algebraic pen strokes as follows.
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Note: President Garfield actually published his proof in the 1876 
edition of the Journal of Education, Volume 3, Issue 161, where the 
trapezoid is shown lying on its right side.

It does not get any simpler than this! Garfield’s proof is a 
magnificent DRIII where all three fundamental quantities a, 
b, c are used in their natural and fundamental sense. An 
extraordinary thing is that the proof was not discovered 
sooner considering the ancient origins of Garfield’s 
trapezoid. Isaac Newton, the co-inventor of calculus, once 
said. “If I have seen further, it has been by standing on the 
shoulders of giants.” I am sure President Garfield, a giant in 
his own right, would concur. Lastly, speaking of agreement, 
Garfield did have this to say about his extraordinary and 
simple proof of the Pythagorean Proposition, “This is one 
thing upon which Republicans and Democrats should both 
agree.”
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2.10] Ohio and the Elusive Calculus Proof

Elisha Loomis (1852-1940), was a Professor of 
Mathematics, active Mason, and contemporary of President 
Garfield. Loomis taught at a number of Ohio colleges and 
high schools, finally retiring as mathematics department 
head for Cleveland West High School in 1923. In 1927, 
Loomis published a still-actively-cited book entitled The 
Pythagorean Proposition, a compendium of over 250 proofs 
of the Pythagorean Theorem—increased to 365 proofs in 
later editions. The Pythagorean Proposition was reissued in 
1940 and finally reprinted by the National Council of 
Teachers of Mathematics in 1968, 2nd printing 1972, as part 
of its “Classics in Mathematics Education” Series.

Per the Pythagorean Proposition, Loomis is credited 
with the following statement; there can be no proof of the 
Pythagorean Theorem using either the methods of 
trigonometry or calculus. Even today, this statement 
remains largely unchallenged as it is still found with source 
citation on at least two academic-style websites1. For 
example, Jim Loy states on his website, “The book The 
Pythagorean Proposition, by Elisha Scott Loomis, is a fairly 
amazing book. It contains 256 proofs of the Pythagorean 
Theorem. It shows that you can devise an infinite number of 
algebraic proofs, like the first proof above. It shows that you 
can devise an infinite number of geometric proofs, like 
Euclid's proof. And it shows that there can be no proof 
using trigonometry, analytic geometry, or calculus. The 
book is out of print, by the way.”

That the Pythagorean Theorem is not provable using 
the methods of trigonometry is obvious since trigonometric 
relationships have their origin in a presupposed 
Pythagorean right-triangle condition. Hence, any proof by 
trigonometry would be a circular proof and logically invalid. 
However, calculus is a different matter.

1 See Math Forum@ Drexel, 
http://mathforum.org/library/drmath/view/6259.html ;
Jim Loy website,http://www.jimloy.com/geometry/pythag.htm .
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Even though the Cartesian coordinate finds its way into 
many calculus problems, this backdrop is not necessary in 
order for calculus to function since the primary purpose of 
a Cartesian coordinate system is to enhance our 
visualization capability with respect to functional and other 
algebraic relationships. In the same regard, calculus most 
definitely does not require a metric of distance—as defined 
by the Distance Formula, another Pythagorean derivate—in 
order to function. There are many ways for one to metricize 
Euclidean n-space that will lead to the establishment of 
rigorous limit and continuity theorems. Table 2.2 lists the 
Pythagorean metric and two alternatives. Reference 19
presents a complete and rigorous development of the 
differential calculus for one and two independent variables 
using the rectangular metric depicted in Table 2.2. 

METRIC SET DEFINITION SHAPE

Pythagorean  2
0

2
0 )()( yyxx Circle

Taxi Cab  |||| 00 yyxx Diamond

Rectangular  || 0xx  and  || 0yy Square

Table 2.2 Three Euclidean Metrics

Lastly, the derivative concept—albeit enhanced via 
the geometric concept of slope introduced with a touch of 
metrics—is actually a much broader notion than 
instantaneous “rise over run”. So what mathematical 
principle may have prompted Elisha Loomis, our early 20th

century Ohioan, to discount the methods of calculus as a 
viable means for proving the Pythagorean Theorem? Only 
that calculus requires geometry as a substrate. The implicit 
and untrue assumption is that all reality-based geometry is 
Pythagorean. For a realty-based geometric counterexample, 
the reader is encouraged to examine Taxicab Geometry: an 
Adventure in Non-Euclidean Geometry by Eugene Krauss, 
(Reference 20).
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Whatever the original intent or implication, the Pythagorean 
Proposition has most definitely discouraged the quest for 
calculus-based proofs of the Pythagorean Theorem, for they 
are rarely found or even mentioned on the worldwide web. 
This perplexing and fundamental void in elementary 
mathematics quickly became a personal challenge to search 
for a new calculus-based proof of the Pythagorean Theorem. 
Calculus excels in its power to analyze changing processes 
incorporating one or more independent variables. Thus, one 
would think that there ought to be something of value in 
Isaac Newton and Gottfried Leibniz’s brainchild—hailed by 
many as the greatest achievement of Western science and 
certainly equal to the Pythagorean brainchild—that would 
allow for an independent metrics-free investigation of the 
Pythagorean Proposition.

Note: I personally remember a copy of the Pythagorean 
Proposition—no doubt, the 1940 edition—sitting on my father’s 
bookshelf while yet a high-school student, Class of 1965.

Initial thoughts/questions were twofold. Could 
calculus be used to analyze a general triangle as it 
dynamically changed into a right triangle?  Furthermore, 
could calculus be used to analyze the relationship amongst 

the squares of the three sides 2A , 2B , 2C  throughout the 
process and establish the sweet spot of equality 

222 CBA  —the Pythagorean Theorem?   Being a lifelong 
Ohioan from the Greater Dayton area personally 
historicized this quest in that I was well aware of the 
significant contributions Ohioans have made to technical 
progress in a variety of fields. By the end of 2004, a viable 
approach seemed to be in hand, as the inherent power of 
calculus was unleashed on several ancient geometric 
structures dating back to the time of Pythagoras himself.

Figure 2.33, Carolyn’s Cauliflower (so named in honor of 
my wife who suggested that the geometric structure looked 
like a head of cauliflower) is the geometric anchor point for 
a calculus-based proof of the Pythagorean Theorem.



71

Figure 2.33: Carolyn’s Cauliflower

The goal is to use the optimization techniques of 
multivariable differential calculus to show that the three 

squares 2A , 2B , and 2C  constructed on the three sides of 
the general triangle shown in Figure 2.33, with angles are 
 ,  , and  , satisfy the Pythagorean condition if and only 

if   . Since 0180  for any triangle, the 

rightmost equality    is equivalent to the 

condition 090 , which in turn implies that triangle 

),,(  is a right triangle. 

:
1

 To start the proof , let 0C  be the fixed length of an 
arbitrary line segment placed in a horizontal position. Let x
be an arbitrary point on the line segment which cuts the 
line segment into two sub-lengths: x  and xC  . Let 

Cy 0  be an arbitrary length of a perpendicular line 

segment erected at the point x . Since x  and y are both 

arbitrary, they are both independent variables in the classic 
sense.

x C-x

y

A2

B2

C2

α β
← γ →
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In addition, y serves as the altitude for the arbitrary triangle

),,(   defined by the construction shown in Figure 

2.33. The sum of the two square areas 2A  and 2B  in 
Figure 2.33 can be determined in terms of x and y  as 

follows:

CyyxCyxBA 2)]([)( 2222  .

The terms 2)( yx   and 2)]([ yxC   are the areas of the 

left and right outer enclosing squares, and the term Cy2  is 

the combined area of the eight shaded triangles expressed 
as an equivalent rectangle. Define ),( yxF  as follows:

2222 }{),( CBAyxF 

Then, substituting the expression for  22 BA  , we have

22

222

2222

}][{4),(

}222{),(

}2)]([){(),(

yxCxyxF

CxyxyxF

CCyyxCyxyxF







We now restrict the function F  to the compact, square 
domain }0,0|),{( CyCxyxD   shown in Figure 

2.34 where the symbols BndD and IntD  denote the 
boundary of D  and interior of D  respectively. 

Figure 2.34: Domain D of F

(0, C) (C, C)

(C, 0)(0, 0)

IntDBndD
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Being polynomial in form, the function F  is both 
continuous and differentiable on D . Continuity implies 
that F achieves both an absolute maximum and absolute 
minimum on D , which occur either on BndD or IntD . 
Additionally, 0),( yxF  for all points ),( yx in D  due to 

the presence of the outermost square in

22}][{4),( yxCxyxF  .

This implies in turn that 0),( minmin yxF  for point(s) 

),( minmin yx corresponding to absolute minimum(s) for 

F on D . Equality to zero will be achieved if and only if

0][ 2
minminmin  yxCx .

Returning to the definition for F , one can immediately see 
that the following four expressions are mutually equivalent 

222

222

2
minminmin

minmin

0

0][

0),(

CBA

CBA

yxCx

yxF









:
2

  We now employ the optimization methods of 
multivariable differential calculus to search for those points 

),( minmin yx  where 0),( minmin yxF  (if such points exist) 

and study the implications. First we examine ),( yxF for 

points ),( yx restricted to the four line segments comprising

BndD .

1. 2]}[{4)0,( xCxxF  . This implies 0)0,( xF  only 

when 0x  or Cx  on the lower segment of BndD . 
Both of these x values lead to degenerate cases.
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2. 0}][{4),( 22  CxCxCxF for all points on the 

upper segment of BndD  since the smallest value 

that |][| 2CxCx  achieves is 4/3 2C , as 

determined via the techniques of single-variable 
differential calculus.

3. 04),(),0( 4  yyCFyF  for all points other than 

0y  (a degenerate case) on the two vertical 

segments of BndD .

To examine F on IntD , first take the partial derivatives of 

F with respect to x and y . This gives after simplification:

}][]{2[8/),( 2yxCxxCxyxF 
}][{16/),( 2yxCxyyyxF 

Next, set the two partial derivatives equal to z

0/),(/),(  yyxFxyxF .

Solving for the associated critical points ),( cpcp yx  yields 

one specific critical point and an entire locus of critical 
points as follows:

)0,( 2
C , a specific critical point

0][ 2  cpcpcp yxCx , 

an entire locus of critical points.

The specific critical point )0,( 2
C  is the midpoint of the lower 

segment for BndD . We have that

04/)0,( 4
2  CF C .
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Thus, the critical point )0,( 2
C is removed from further 

consideration since 0)0,( 2 CF , which in turn 

implies 222 CBA  . As a geometric digression, any point 
)0,(x on the lower segment of BndD  represents a 

degenerate case associated with Figure 2.33 since a viable 
triangle cannot be generated if the y  value (the altitude) is 

zero as depicted in Figure 2.35

Figure 2.35: Carolyn’s Cauliflower for y = 0

To examine the locus of critical points 

0][ 2  cpcpcp yxCx , we first need to ask the following 

question: Given a critical point ),( cpcp yx  on the locus with 

Cxcp 0 , does the critical point necessarily lie in IntD ? 

Again, we turn to the techniques of single-variable 
differential calculus for an answer.

1A 2A

3A

C-x

y = 0

x
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Let cpx be the x component of an arbitrary critical point 

),( cpcp yx . Now cpx  must be such that Cxcp 0 0 in 

order for the quantity 0][  cpcp xCx . This in turn allows 

two real-number values for cpy . In light of Figure 2.33, 

only those cpy values where 0cpy are of interest.

Figure 2.36: Behavior of G on IntD

Define the continuous quadratic function 
2][)( yxCxyG cpcp  on the vertical line segment 

connecting the two points )0,( cpx and ),( Cxcp  on BndD  as 

shown in Figure 2.36. On the lower segment, we have 

0][)0(  cpcp xCxG  for all cpx  in Cxcp 0 . On the 

upper segment, we have that 0][)( 2  CxCxCG cpcp

for all cpx  in Cxcp 0 . This is since the maximum that 

),( CxG can achieve for any cpx in Cxcp 0 is 4/3 2C
per the optimization techniques of single-variable calculus. 
Now, by the intermediate value theorem, there must be a 

value Cy  *0  where 0*)(][*)( 2  yxCxyG cpcp . 

By inspection, the associated point *),( yxcp  is in IntD , 

and, thus, by definition is part of the locus of critical points 

with ),(*),( cpcpcp yxyx  .

(xcp, 0) & G(0) > 0

(xcp, C) & G(C) < 0 

(xcp, ycp) 
&
G(ycp) = 0

G(y) is 
defined on 
this line
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Since cpx was chosen on an arbitrary basis, all critical 

points ),( cpcp yx defined by 0][ 2  cpcpcp yxCx lie 

in IntD .

:
3

  Thus far, we have used the techniques of differential 
calculus (both single and multi-variable) to establish a 

locus of critical points 0][ 2  cpcpcp yxCx  lying entirely 

within IntD . What is the relationship of each point 

),( cpcp yx  to the Pythagorean Theorem? As observed at the 

end of Step 1, one can immediately state the following: 

222

222

2
minminmin

minmin

0

0][

0),(

CBA

CBA

yxCx

yxF









.

Figure 2.37: D and Locus of Critical Points

NL

M = (xcp, ycp)


xcp

ycp

C - xcp

ηθ

βα

γ = θ + η

P
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However, the last four-part equivalency is not enough. We 
need information about the three angles in our arbitrary 

triangle generated via the critical point ),( cpcp yx  as shown 

in Figure 2.37. In particular, is    a right angle? If 

so, then the condition 222 CBA   corresponds to the fact 

that LMN  is a right triangle and we are done! To proceed, 

first rewrite 0][ 2  cpcpcp yxCx  as

cp

cp

cp

cp

xC

y

y

x


 .

Now study this proportional equality in light of Figure 2.37, 
where one sees that it establishes direct proportionality of 
non-hypotenuse sides for the two triangles LPM and 

MPN . From Figure 2.37, we see that both triangles have 
interior right angles, establishing that

MPNLPM  .

Thus    and   . Since the sum of the remaining 

two angles in a right triangle is 090  both 090 and 
090  . Combining 090   with the equality 

   and the definition for   immediately leads to 
090  , establishing the key fact that LMN  is a 

right triangle and the subsequent simultaneity of the two 
conditions






222 CBA

Figure 2.38 on the next page summarizes the 
various logic paths applicable to the now established 
Cauliflower Proof of the Pythagorean Theorem with Converse.
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Figure 2.38: Logically Equivalent Starting Points

Starting with any one of the five statements in Figure 2.38, 
any of the remaining four statements can be deduced via 
the Cauliflower Proof by following a permissible path as 
indicated by the dashed lines. Each line is double-arrowed 
indicating total reversibility along that particular line.

Once the Pythagorean Theorem is established, one 
can show that the locus of points

0][ 2  cpcpcp yxCx

describes a circle centered at )0,( 2
C with radius 2

C  by 

rewriting the equation as

2
2

22
2 ][)( C

cp
C

cp yx  .

This was not possible prior to the establishment of the 
Pythagorean Theorem since the analytic equation for a 
circle is derived using the distance formula, a corollary of 
the Pythagorean Theorem. The dashed circle described by

2
2

22
2 ][)( C

cp
C

cp yx 

in Figure 2.37  nicely reinforces the fact that LMN  is a 
right triangle by the Inscribed Triangle Theorem of basic 
geometry.

F(x,y) = 0

A2 + B2 = C2

x(C - x)2 + y2 = 0

α + β = γ

∂F/∂x = ∂F/∂y = 0
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Our final topic in this Section leads to a more 
general statement of the Pythagorean Theorem.

Let ),( cpcp yx be an arbitrary interior critical point as 

established by the Cauliflower Proof. Except for the single 

boundary point )0,( 2
c  on the lower boundary of )( fD , the 

interior critical points ),( cpcp yx are the only possible critical 

points. Create a vertical line segment passing through 

),( cpcp yx and joining the two points  )0,( cpx  and ),( cxcp as 

shown in Figure 2.39 below. As created, this vertical line 
segment will pass through one and only one critical point.

Figure 2.39: Walking From Inequality to
Equality to Inequality

(xcp, C)
(0, C) (C, C)

(0, 0) (C, 0)

A1+A2<A3

A1+A2>A3

(xcp, o)

(xcp, ycp) & A1+A2=A3
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Define a new function

22
321 222),( ycxxAAAyxg cpcpcp 

for all points y on the vertical line segment where the stick 

figure is walking. The function ),( yxg cp is  clearly 

continuous on the closed line segment  ],0[: cyy   where 

),0( cycp  . We note the following three results:

1. 0)(2)0,(  cxxxg cpcpcp

2.   0][2),( 2  cpcpcpcpcp yxcxyxg

3. 0)(22),( 2  cpcpcp xccxcxg .

By continuity, we can immediately deduce that our function

),( yxg cp has the following behavior directly associated with 

the three results as given above:

1. 0),( yxg cp  for all ),0[ cpyy

This in turn implies that 321 AAA  .

 2. 0),( cpcp yxg

This in turn implies that 321 AAA  .

3. 0),( yxg cp  for all ],( cyy cp

This in turn implies that 321 AAA  .

Tying these results to the obvious measure of the associated 
interior vertex angle   in Figure 2.37 leads to our final 

revised statement of the Pythagorean Theorem and converse 
on the next page.
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The Pythagorean Theorem and
Pythagorean Converse

Suppose we have a family of triangles built from a
common hypotenuse C  with side lengths and angles

labeled in general fashion as shown below.

Then the following three cases apply

1. 222 CBA  
2. 222 CBA  
3. 222 CBA  

with the Pythagorean Theorem and Converse being Case 2.

AB

C
 


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2.11) Shear, Shape, and Area

Our last major category of proof for the Pythagorean 
Proposition is that of a shearing proof. Shearing proofs have 
been around for at least one thousand years, but they have 
increased in popularity with the advent of the modern 
computer and associated computer graphics. 

The heart of a shearing proof is a rectangle that 
changes to a parallelogram preserving area as shown in 
Figure 2.40. Area is preserved as long as the length and 
altitude remain the same. In a sense, one could say that a 
shearing force F is needed to alter the shape of the 
rectangle into the associated parallelogram, hence the name 
shearing proof. Shearing proofs distinguish themselves from 
transformer proofs in that playing pieces will undergo both 
shape changes and position changes. In transformer proofs, 
the playing pieces only undergo position changes. 

Figure 2.40: Shearing a Rectangle

Shearing proofs are primarily visual in nature, making them 
fantastic to watch when animated on a computer. As such, 
they are of special interest to mathematical hobbyists, who 
collectively maintain their delightful pursuit of new ones.  

Identical b and h 
throughout implies

A1=A2=A3

A3

F

A2A1b

h

F
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The one shearing proof that we will illustrate, without the 
benefit of modern technology, starts with a variant of 
Euclid’s Windmill, Figure 2.41. Four basic steps are 
needed to move the total area of the big square into the two 
smaller squares.

Figure 2.41: A Four Step Shearing Proof

Step descriptors are  as follows:

Shear Line

2] Shear Up

3] Push Up 4] Shear Out

1] Start

A1 A2

A1

A2

A1 A2

A1 A2
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Step 1: Cut the big square into two pieces using Euclid’s 
perpendicular as a cutting guide.

Step 2: Shear a first time, transforming the two rectangles 
into associated equal-area parallelograms whose slanted 
sides run parallel to the two doglegs of the master triangle.

Step 3: Push the two parallelograms are pushed vertically 
upward to the top of the shear line, which is a projection of 
the altitude for each square.

Step 4: Shear a second time to squeeze both parallelograms 
into the associated little squares.

To summarize the shear proof: The hypotenuse square is cut 
into two rectangles  per the Euclidean shear line. The 
rectangles are sheared into equivalent-area parallelograms, 
which are then pushed up the Euclidean shear line into a 
position allowing each parallelogram to be sheared back to 
the associated little square.
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2.12) A Challenge for All Ages

As shown in this chapter, proving the Pythagorean 
Theorem has provided many opportunities for mathematical 
discovery for nearly 4000 years. Moreover, the Pythagorean 
Theorem does not cease in its ability to attract new 
generations of amateurs and professionals who want to add 
yet another proof to the long list of existing proofs. Proofs 
can be of many types and at many levels. Some are suitable 
for children in elementary school such as the visual proof 
attributed to Pythagoras himself—super effective if made 
into a plastic or wood hand-manipulative set. Other proofs 
only require background in formal geometry such as the 
shearing proof in Section 2.11. Still others require 
background in both algebra and geometry. The Cauliflower 
Proof requires a background in calculus. Thus, one can say 
there is a proof for all ages as, indeed, there have been 
proofs throughout the ages. The Pythagorean Crown Jewel 
never ceases to awe and inspire! 

Type Example Comment
Visual
Dissection

Pythagoras Elementary School

Advanced 
Visual
Dissection

Liu Hui Middle School

Algebraic
Dissection

Bhaskara Middle School

Construction Euclid Early High School

Transformer Kurrah Middle School

Similarity Legendre High School

Tiling Perigal Early High School

Calculus ‘Cauliflower’ Early College

Shearing Section 2.11 Early High School

Table 2.3: Categories of Pythagorean Proofs
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In Table 2.3, we briefly summarize the categories of existing 
proofs with an example for each. Not all proofs neatly tuck 
into one category or another, but rather combine various 
elements of several categories. A prime example is 
Legendre’s similarity proof. In Chapter 3, Diamonds of the 
Same Mind, we will explore a sampling of major mathematical 
‘spin offs’ attributed to the Pythagorean Theorem. In doing 
so, we will get a glimpse of how our Crown Jewel has 
permeated many aspects of today’s mathematics and, by 
doing so, underpinned many of our modern technological 
marvels and discoveries. 

Euclid’s Beauty Revisited

Never did Euclid, as Newton ‘, discern
Areas between an edge and a curve
Where ancient precisions of straight defer
To infinitesimal addends of turn,
Precisely tallied in order to learn
Those planes that Euclid could only observe
As beauty…then barren of quadrature
And numbers for which Fair Order did yearn.

Thus beauty of worth meant beauty in square,
Or, those simple forms that covered the same.
And, though, Archimedes reckoned with care
Arcs of exhaustion no purist would claim,
Yet, his were the means for Newton to bare
True Beauty posed…in Principia’s frame.   

October 2006
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3) Diamonds of the Same Mind

“Philosophy is written in this grand book—I mean the universe—which 
stands continually open to our gaze, but it cannot be understood unless 
one first learns to comprehend the language and interpret the characters 
in which it is written. It is written in the language of mathematics, and 
its characters are triangles, circles, and other geometric figures, without 
which it is humanly impossible to understand a single word of it; 
without these, one is wandering about in a dark labyrinth.” Galileo 
Galilei

3.1) Extension to Similar Areas

All squares are geometrically similar. When we ‘fit’ length—
the primary dimension associated with a square—to all 

three sides of a right triangle, we have that 222 cba   or 

321 AAA   by the Pythagorean Theorem. The equation  

321 AAA   not only applies to areas of squares fitted to 

the sides of a right triangle, but also to any geometrically 
similar planar figure fitted to the sides of a right triangle 
such as the three similar crosses shown in Figure 3.1.

Figure 3.1: Three Squares, Three Crosses

A1
A2

A3

a b

c
b

a

c

A1

A2

A3
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We can formally state this similarity principle as a theorem, 
one first espoused by Euclid for the special case of similar 
rectangles (Book 6, Proposition 31).

Similar-Figure Theorem: Suppose three similar geometric 
figures are fitted to the three sides of a right triangle in 

such a fashion that 2
1 kaA  , 2

2 kbA  , and 2
3 kcA 

where the constant of proportionality k  is identical for all 

three figures. Then we have that 321 AAA  .

Proof: From the Pythagorean Theorem

 321
222222 AAAkckbkacba

Table 3.1 provides several area formulas of the form 
2kcA  for a sampling of geometric figures fitted to a 

hypotenuse of length c . In order to apply the similar-figure 
theorem to any given set of three geometric figures, the 
fitting constant k must remain the same for the remaining 

two sides a  and b .

SIMILAR FIGURE DIMENSION AREA 
FORMULA

Square Side length 21 cA 

Rectangle Length or height 2cA c
h 

Semicircle Diameter 2
8 cA  

Equilateral Triangle Side length 2
4
3 cA 

Cross (Figure 3.1) Side length 23cA 

Pentagon Side length 272048.1 cA 

Hexagon Side length 2
2

33 cA 

Table 3.1: A Sampling of Similar Areas
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3.2) Pythagorean Triples and Triangles

Figure 3.2: Pythagorean Triples

A Pythagorean Triple is a set of three positive 
integers ),,( cba satisfying the classical Pythagorean 

relationship

222 cba  .

Furthermore, a Pythagorean Triangle is simply a right 
triangle having side lengths corresponding to the integers in 
a Pythagorean Triple. Figure 3.2 shows the earliest and 
smallest such triple, )5,4,3( , known to the Egyptians some 

4000 years ago in the context of a construction device for 
laying out right angles (Section 2.1). The triple  )10,8,6(  was 

also used by early builders to lay out right triangles. 
Pythagorean triples were studied in their own right by the 
Babylonians and the Greeks. Even today, Pythagorean 
Triples are a continuing and wonderful treasure chest for 
professionals and amateurs alike as they explore various 
numerical relationships and oddities using the methods of 
number theory, in particular Diophantine analysis (the 
study of algebraic equations whose answers can only be 
positive integers). We will not even attempt to open the 
treasure chest in this volume, but simply point the reader 
to the great and thorough references by Beiler and 
Sierpinski where the treasures are revealed in full glory.

5

4

3
22 nmb 

mna 2

22 nmc 
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What we will do in Section 3.2 is present the 
formulas for a well-known method for generating 
Pythagorean Triples. This method provides one of the 
traditional starting points for further explorations of 
Pythagorean Triangles and Triples.

Theorem: Let 0 nm  be two positive integers. Then a set 
of Pythagorean Triples is given by the formula:

),,2(),,( 2222 nmnmmncba 

Proof: 









222222

422422

42242222

222222

)(

2

24

)()2(

cnmba

nnmmba

nnmmnmba

nmmnba

From the formulas for the three Pythagorean Triples, we 
can immediately develop expressions for both the perimeter
P and area A of the associated Pythagorean Triangle.

)(22

)())(2(
2222

2222
2
1

nmmnmnmmnP

nmmnnmmnA





One example of an elementary exploration is to find all 
Pythagorean Triangles whose area numerically equals the 
perimeter. To do so, first set

2,3&1,3

2)(

)(2)( 22








nmnm

nmn

nmmnmmn

PA

   For 1,3  nm ,  we have that 24 PA .

   For 2,3  nm ,  we have that 30 PA .
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Table 3.2 lists all possible Pythagorean Triples with long 
side 100c  generated via the nm & formulas on the 
previous page. Shaded are the two solutions where PA  .

M N A=2MN B=M2-N2 C=M2+N2 T P A

2 1 4 3 5 PT 12 6
3 1 6 8 10 C 24 24
3 2 12 5 13 PT 30 30
4 1 8 15 17 P 40 60
4 2 16 12 20 C 48 96
4 3 24 7 25 PT 56 84
5 1 10 24 26 C 60 120
5 2 20 21 29 P 70 210*
5 3 30 16 34 C 80 240
5 4 40 9 41 PT 90 180
6 1 12 35 37 P 84 210*
6 2 24 32 40 C 96 384
6 3 36 27 45 C 108 486
6 4 48 20 52 C 120 480
6 5 60 11 61 PT 132 330
7 1 14 48 50 C 112 336
7 2 28 45 53 P 126 630
7 3 42 40 58 C 140 840*
7 4 56 33 65 P 154 924
7 5 70 24 74 C 168 840*
7 6 84 13 85 PT 182 546
8 1 16 63 65 P 144 504
8 2 32 60 68 C 160 960
8 3 48 55 73 P 176 1320
8 4 64 48 80 C 192 1536
8 5 80 39 89 P 208 1560
9 1 18 80 82 C 180 720
9 2 36 77 85 P 198 1386
9 3 54 72 90 C 216 1944
9 4 72 65 97 P 234 2340

Table 3.2: Pythagorean Triples with c<100

Examining the table, one will first notice a column headed 
by the symbol T, which doesn’t match with any known 
common abbreviations such as A (area) or P (perimeter). 
The symbol T stands for type or triple type.
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There are three Pythagorean-triple types: primitive (P), 
primitive twin (PT), and composite (C). The definitions for 
each are as follows.

1. Primitive: A Pythagorean Triple ),,( cba  where there is no 

common factor for all three positive integers cba ,&, .

2. Primitive twin: A Pythagorean Triple ),,( cba  where the 

longest leg differs from the hypotenuse by one. 

3. Composite: A Pythagorean Triple ),,( cba  where there is a 

common factor for all three positive integers cba ,&, .

The definition for primitive twin can help us find an 
associated nm &  condition for identifying the same. If 

mna 2  is the longest leg, then

11)(

12

12

1

2

22

22









nmnm

nmnm

mnnm

ac

.

Examining Table 3.2 confirms the last equality; primitive 
twins occur whenever 1 nm . As a quick exercise, we 
invite the reader to confirm that the two cases 7,8, nm
and 8,9, nm  also produce Pythagorean twins with 

100c . 

If 22 nmb  is the longest leg [such as the case for 
2&7  nm ], then

12

1

1

2

2222







n

nmnm

bc

.
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The last equality has no solutions that are positive integers. 
Therefore, we can end our quest for Pythagorean Triples 
where 1 bc . 

Table 3.2 reveals two ways that Composite 
Pythagorean Triples are formed. The first way is when the 
two generators nm &  have factors in common, examples of 

which are 2&6  nm , 3&6  nm , 4&6  nm  or
4&8  nm . Suppose the two generators nm &  have a 

factor in common which simply means kqmkpm  & . 

Then the following is true:

)()()(

)()()(

222

2222222

2222222

2

qpkkqkpnmc

qpkkqkpnmb

pqkkpkqmna







.

The last expressions show that the three positive integers 
cba &, have the same factor k in common, but now to the 

second power. The second way is when the two generators 
nm &  differ by a factor of two: ...3,2,1,2  kknm .

Exploring this further, we have

2222

222

2

442)2(

42)2(

22)2(2

nnknnknc

kknknb

knnnkna
n







.

Each of the integers cba &,  is divisible by two. Thus, all 

three integers share, as a minimum, the common factor 
two.

In General:  If 0k  is a positive integer and ),,( cba  is a 

Pythagorean triple, then ),,( kckbka  is also a Pythagorean 

Triple. Proof: left as a challenge to the reader.
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Thus, if we multiply any given primitive Pythagorean Triple, 
say )5,3,4( , by successive integers ...3,2k ; one can create

an unlimited number composite Pythagorean Triples and 
associated Triangles )10,6,8( , )15,9,12( , etc.

We close this section by commenting on the 
asterisked * values in Table 3.2. These correspond to cases 
where two or more Pythagorean Triangles have identical 
planar areas. These equal-area Pythagorean Triangles are 
somewhat rare and provide plenty of opportunity for 
amateurs to discover new pairs. Table 3.3 is a small table 
of selected equal-area Pythagorean Triangles.

A B C AREA
20 21 29 210
12 35 37 210
42 40 58 840
70 24 74 840

112 15 113 840
208 105 233 10920
182 120 218 10920
390 56 392 10920

Table 3.3: Equal-Area Pythagorean Triangles

Rarer yet are equal-perimeter Pythagorean Triangles.  
Table 3.4 shows one set of four equal-perimeter 
Pythagorean Triangles where the perimeter 000,000,1P . 

Rumor has it that there are six other sets of four where 
000,000,1P !

A B C PERIM
153868 9435 154157 317460
99660 86099 131701 317460
43660 133419 140381 317460
13260 151811 152389 317460

Table 3.4: Equal-Perimeter Pythagorean Triangles
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3.3) Inscribed Circle Theorem

The Inscribed Circle Theorem states that the radius 
of a circle inscribed within a Pythagorean Triangle is a 
positive integer given that the three sides have been 
generated by the nm &  process described in Section 3.2. 
Figure 3.3 shows the layout for the Inscribed Circle 
Theorem.

Figure 3.3: Inscribed Circle Theorem

The proof is simple once you see the needed dissection. The 
key is to equate the area of the big triangle ABC  to the 
sum of the areas for the three smaller triangles ADB , 

BDC , and ADC . Analytic geometry deftly yields the 
result.
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The last equality shows that the inscribed radius r
is a product of two positive integral quantities )( nmn  . 

Thus the inscribed radius itself, called a Pythagorean 
Radius, is a positive integral quantity, which is what we set 
out to prove. The proof also gives us as a bonus the actual 
formula for finding the inscribed radius  )( nmnr  . 

Table 3.5 gives r  values for all possible nm & values where 
7m .

M N A=2MN B=M2-N2 C=M2+N2 R=N(M-N)
2 1 4 3 5 1
3 1 6 8 10 2
3 2 12 5 13 2
4 1 8 15 17 3
4 2 16 12 20 4
4 3 24 7 25 3
5 1 10 24 26 4
5 2 20 21 29 6
5 3 30 16 34 6
5 4 40 9 41 4
6 1 12 35 37 5
6 2 24 32 40 8
6 3 36 27 45 9
6 4 48 20 52 8
6 5 60 11 61 5
7 1 14 48 50 6
7 2 28 45 53 10
7 3 42 40 58 12
7 4 56 33 65 12
7 5 70 24 74 10
7 6 84 13 85 6

Table 3.5: Select Pythagorean Radii
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3.4) Adding a Dimension

Inscribe a right triangle in cattycorner fashion and 
within a rectangular solid having the three side lengths A, 
B, and C as shown in Figure 3.4. Once done, the 
Pythagorean Theorem can be easily extended to three 
dimensions as follows.

Figure 3.4: Three Dimensional Pythagorean Theorem

Extension Theorem: Let three mutually-perpendicular line 
segments have lengths A, B and C respectively, and let 
these line segments be joined in unbroken end-to-end 
fashion as shown in Figure 3.4.  Then the square of the 
straight-line distance from the beginning of the first 
segment to the end of the last line segment is given by

2222 DCBA 

Proof: From the Pythagorean Theorem, we have 
222 DCX  . From the Pythagorean Theorem a second 

time, we have 222 XBA  . Thus







2222

222

222 &

DCBA

XBA

DCX

D

A

C

B
X
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A Pythagorean Quartet is a set of four positive 
integers ),,,( dcba satisfying the three-dimensional 

Pythagorean relationship 2222 dcba  .

Pythagorean quartets can be generated using the nm &
formulas below.

22

2

2

2

2

2

nmd

nc

mnb

ma








To verify, square the expressions for cba &, , add, and 

simplify.







222
2

44

22222

)2(

44

)2()2()(

dnm

nmnm

nmnm

Table 3.6 lists the first twelve Pythagorean quartets so 
generated.

M N A=M2 B=2MN C=2N2 D=M2+2N2

2 1 4 4 2 6
3 1 9 6 2 11
3 2 9 10 8 17
4 1 16 8 2 18
4 2 16 16 8 24
4 3 16 24 18 34
5 1 25 10 2 27
5 2 25 20 8 33
5 3 25 30 18 43
5 4 25 40 32 57
6 1 36 12 2 38
6 2 36 24 8 44

Table 3.6: Select Pythagorean Quartets
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Our last topic in Section 3.4 addresses the famous 
Distance Formula, a far-reaching result that is a direct 
consequence of the Pythagorean Theorem. The Distance 
Formula—an alternate formulation of the Pythagorean 
Theorem in analytic-geometry form—permeates all of basic 
and advanced mathematics due to its fundamental utility. 

Figure 3.5: Three-Dimensional Distance Formula

Theorem: Let ),,( 111 zyx and  ),,( 222 zyx  be two points in 

three-dimensional Cartesian coordinate space as shown in 
Figure 3.5.  Let D  be the straight-line distance between 
the two points. Then the distance D  is given by

2
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2
12

2
12 )()()( zzyyxxD  .

Proof: 
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3.5) Pythagoras and the Three Means

The Pythagorean Theorem can be used to visually 
display three different statistical means or averages: 
arithmetic mean, geometric mean, and harmonic mean.

Suppose ba & are two numbers. From these two 
numbers, we can create three different means defined by

Arithmetic Mean: 
2

ba
M A




Geometric Mean: abM G 

Harmonic Mean: 
ba

ab
M

ba

H 





22
11

.

Collectively, these three means are called the Pythagorean 
Means due to their interlocking relationships with respect 
to six right-triangles as shown in Figure 3.6.

Figure 3.6: The Three Pythagorean Means
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xECM G 
yFCM H 

RGBM A 

AGH MMM 
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In Figure 3.6, the line AD  has length ba   and is 

the diameter for a circle with center 2/][ ba  . Triangle 

ACD  utilizes AD  as its hypotenuse and the circle rim as 

its vertex making ACD a right triangle by construction. 

Since EC  is perpendicular to AD , ACE  and ECD  are 
both similar to ACD . Likewise, the three triangles 

GCE , GFE , and EFC  form a second similarity group 
by construction.

Next, we show that the three line segments GB , 

EC , and FC  are the three Pythagorean Means AM , GM , 

and HM as defined.

  

Arithmetic Mean: The line segment GB  is a radius and has 
length 2/][ ba   by definition. It immediately follows that:

2

ba
GBM A


 .

Geometric Mean: The similarity relationship 
ECDACE   leads to the following proportion:

abxECM

abxabx

x

b

a

x

G 





2 .

Harmonic Mean: By construction, the line segment GC  is a 

radius with length 2/][ ba  . Line segment EF  is 

constructed perpendicular to GC . This in turn makes 
EFCGCE  , which leads to the following proportion 

and expression for FC .
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ba
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

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



Examining the relative lengths of the three line segments

GB , EC , and FC  in Figure 3.6 immediately establishes 

the inequality AGH MMM   for the three Pythagorean 

Means. The reader is invited to verify that AGH MMM 
when ba  .

As is usually done in mathematics, our two-number 
Pythagorean Mean definitions can easily be generalized to 

multi-number definitions. Let niai ,1,   be n numbers.

Then the following definitions apply:

General Arithmetic Mean: 
n

a
M

n

i
i

A


 1

General Geometric Mean: n

n

i
iG aM 




1

General Harmonic Mean: 





n

i i

H

a

n
M

1

1
.

To close, various sorts of means are some of the 
most widely used quantities in modern statistics. Three of 
these have geometric origins and can be interpreted within 
a Pythagorean context.



104

3.6) The Theorems of Heron, Pappus, 
Kurrah, and Stewart

The Pythagorean Theorem uses as its starting point 
a right triangle. Suppose a triangle is not a right triangle. 
What can we say about relationships amongst the various 
parts of a triangle’s anatomy: sides, areas, and altitudes?
Most students of mathematics can recite the two basic 
formulas as presented in Figure 3.7. Are there other facts 
that one can glean?

Figure 3.7: The Two Basic Triangle Formulas

In this section, we will look at four investigations into this 
very question spanning a period of approximately 1700 
years. Three of the associated scientists and 
mathematicians—Heron, Pappus, and Stewart—are new to 
our study. We have previously introduced Kurrah in Section
2.4.

Heron, also known as Hero of Alexandria, was a
physicist, mathematician, and engineer who lived in the 1st

century ACE.

Figure 3.8: Schematic of Hero’s Steam Engine
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Hero was the founder of the Higher Technical School at the 
then world-renown center of learning at Alexandria, Egypt. 
He invented the first steam engine, schematically depicted 
in Figure 3.8, a device that rotated due to the thrust 
generated by steam exiting through two nozzles 
diametrically placed on opposite sides of the axis of 
rotation. Working models of Hero’s steam engine are still 
sold today as tabletop scientific collectables.

In his role as an accomplished mathematician, 
Heron (as he is better known in mathematical circles) 
discovered one of the great results of classical mathematics, 
a general formula for triangular area known as Heron’s 
Theorem. Heron did not originally use the Pythagorean 
Theorem to prove his result. Both the Pythagorean Theorem 
and Heron’s Theorem are independent and co-equal results 
in that each can be derived without the use of the other and 
each can be used to prove the other. In this section, we will 
show how the Pythagorean Theorem, coupled with ‘heavy’ 
analytic geometry, is used to render the truth of Heron’s 
Theorem. First, we state Heron’s historic result.

Heron’s Theorem: Suppose a general triangle (a triangle 
having no special angles such as right angles) has three 
sides whose lengths are a ,b , and c  respectively. Let 

2/][ cbas   be the semi-perimeter for the same. Then 

the internal area A enclosed by the general triangle, Figure 
3.9, is given by the formula:

))()(( csbsassA  .

Figure 3.9: Diagram for Heron’s Theorem
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Proof of Heron’s Theorem:

:
1

 Using the Pythagorean Theorem, create two equations

21 & EE in the two unknowns h  and x .

222
2

222
1

)(:

:

axchE

bxhE





:
2

 Subtract 2E from 1E and then solve for x .

c

abc
x

abccx

abxcx

2

2

)(

222

222

2222








:
3

 Substitute the last value for x into 1E .

2
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2
b

c
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h 







 


:
4

 Solve for h .
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
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:
5

 Solve for area using the formula chA 2
1 .

    

    

    
2222

222

16

4 22
1
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
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









abcabcabcbaccba
A

abcabcbcacba
A

c

abcabcbcacba
cA

:
6

 Substitute 2/][ cbas  and simplify to obtain the 

final result.












 






 






 

))()((

))()((

}{
2

2

2

2

2

2

csbsassA

sasbscsA

s
a

s
b

s
c

sA

***

Pappus, like Heron, was a prominent mathematician 
of the Alexandrian School and contributed much to the field 
of mathematics. There are several ‘Pappus Theorems’ still in 
use today. Notable is the Pappus Theorem utilized in multi-
variable calculus to determine the volume of a solid of 
revolution via the circular distance traveled by a centroid.   
In his masterwork, The Mathematical Collection (circa 300 
ACE), he published the following generalization of the 
Pythagorean Theorem which goes by his name.

Pappus’ Theorem: Let ABC  be a general triangle with 

sides AB , AC , and BC . Suppose arbitrary parallelograms 

having areas 1A  and 2A  are fitted to sides AC  and BC as 

shown in Figure 3.10.
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If a parallelogram of area 3A  is fitted to side AB via the 

construction method in Figure 3.10, then 321 AAA  .

Figure 3.10: Diagram for Pappus’ Theorem

Proof of Pappus’ Theorem:

:
1

 Let ABC  be a general triangle. Fit an arbitrary 

parallelogram of area 1A to the side AC ; likewise, fit the 

arbitrary parallelogram of area 2A  to the side BC .

:
2

  Linearly extend the outer sides—dotted lines—of the 
two fitted parallelograms until they meet at the point D.

:
3

  Construct a dashed shear line through the points D

and C as shown in Figure 3.10. Let  dEFDC  . 
Construct two additional shear lines through points A and 
B with both lines parallel to the line passing through points 
D and C. 

321 AAA 

1A 2A

d

3Ad
A B

C

D
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:
4

  Construct the parallelogram with area 3A  as shown 

with two sides of length AB  and two sides of length DC . 
We claim that if the third parallelogram is constructed in 

this fashion, then 321 AAA  .

:
5

 Figure 3.11 depicts the two-step shearing proof for
Pappus’ Theorem. The proof is rather easy once the 

restrictions for the rectangle to be fitted on side AB  are 
known. Figure 3.11 shows the areas of the two original 
parallelograms being preserved through a two-step 
transformation that preserves equality of altitudes. This is 
done by keeping each area contained within two pairs of 

parallel guidelines—like railroad tracks. In this fashion, 1A
is morphed to the left side of the constructed parallelogram 

having area 3A . Likewise, 2A  is morphed to the right side 

of the same. Summing the two areas gives the sought after 
result:

 321 AAA

Figure 3.11: Pappus Triple Shear Line Proof

1A 2A

3A

1A 2A
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Note1: The reader is invited to compare the shearing proof of Pappus 
to the one presented in Section 2.11 and notice the sequence 
reversal.

Note2: Pappus’ Theorem is restrictive in that one must construct the 
third parallelogram according to the process laid out in the proof. 
Perhaps the theorem evolved after many trials with the squares of 
Pythagoras as Pappus tried to relate size of squares to the sides of 
a general triangle. In doing so, squares became rectangles and 
parallelograms as the investigation broadened. I suspect, as is 
usually the case, perspiration and inspiration combined to produce 
the magnificent result above!

Like Herron’s Theorem, both the Pythagorean 
Theorem and Pappus’ Theorem are independent and co-
equal results. Figure 3.12 shows the methods associated 
with Pappus’ Theorem as they are used to prove the 
Pythagorean Theorem, providing another example of a 
Pythagorean shearing proof in addition to the one shown in 
Section 2.11. The second set of equally spaced sheer lines
on the left side, are used to cut the smaller square into two 
pieces so that a fitting within the rails can quite literally 
occur.

Figure 3.12: Pappus Meets Pythagoras

***
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Double Shear
And Fit side
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We already have introduced Thabit ibn Kurrah in 
Section 2.4 with respect to his Bride’s Chair and associated 
transformer proof. Kurrah also investigated non-right 
triangles and was able to generalize the Pythagorean 
Proposition as follows.

Kurrah’s Theorem: Suppose a general triangle AED  has 

three sides whose lengths are AD , AE , and ED . Let the 
vertex angle AED  as shown in Figure 3.13. 

Construct the two line segments ED  and EC  in such a 
fashion that both ABE  and DCE . Then we 
have that

)(
22

CDABADEDAE  .

Figure 3.13: Diagram for Kurrah’s Theorem

Proof of Kurrah’s Theorem:

:
1

  Establish similarity for three key triangles by noting 
that angle BAE  is common to ABE  and AED . 
Likewise EDC  is common to ECD  and AED . This 
and the fact that   DCEABEAEB   implies 

ECDABEAED  .






A

E

D
CB
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:
2

 Set up and solve two proportional relationships

ADCDED
ED

AD

CD

ED

ADABAE
AE

AD

AB

AE





2

2
&

:
3

  Add the two results above and simplify to complete the 
proof. 

 



CDABADEDAE

ADCDADABEDAE
22

22

Kurrah’s Theorem can be used to prove the Pythagorean 

Theorem for the special case 090  via the following very 
simple logic sequence.

For, if the angle  happens to be a right angle, then we 

have a merging of the line segment EB  with the line 

segment EC . This in turn implies that the line segment 

BC  has zero length and ADCDAB  . Substituting into 
Kurrah’s result gives


222

ADEDAE ,

Note: Yet another proof of the Pythagorean Theorem!

***

Mathew Stewart (1717-1785) was a professor at the 
University of Edinburgh and a Fellow of the Royal Society. 
The famous theorem as stated on the next page—although
attributed to Stewart—has geometric similarities to 
theorems originally discovered and proved by Apollonius.
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Some historians believe Stewart’s Theorem can be traced as 
far back as Archimedes. Other historians believe that 
Simpson (one of Stewart’s academic mentors) actually 
proved ‘Stewart’s Theorem’.  Controversy aside, Stewart was 
a brilliant geometer in his own right. Like Euclid, Stewart 
was an expert organizer of known and useful results in the 
burgeoning new area of mathematical physics—especially 
orbital mechanics.

Unlike the three previous theorems, Stewart’s 
Theorem is not co-equal to the Pythagorean Theorem. This 
means that Stewart’s Theorem requires the use of the 
Pythagorean Theorem in order to construct a proof. 
Independent proofs of Stewart’s Theorem are not possible 
and, thus, any attempt to prove the Pythagorean Theorem 
using Stewart’s Theorem becomes an exercise in circular 
logic. We now proceed with the theorem statement

Figure 3.14: Diagram for Stewart’s Theorem

Stewart’s Theorem: Suppose a general triangle (a 
triangle having no special angles such as right angles) has 
sides with lengths a , b , and c . Let a line segment of 
unknown length d  be drawn from the vertex of the triangle 
to the horizontal side as shown in Figure 3.14, cutting c
into two portions m  and n  where nmc  . Then, the 
following relationship holds among the six line segments 
whose lengths are mdcba ,,,, , and n :

][ 222 mndcmbna  .

a b

nmc 

h
x 

d

m n
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Proof of Stewart’s Theorem

:
1

 Using the Pythagorean Theorem, create three equations 

321 ,&, EEE in the three  unknowns d , h , and x .

222
3

222
2

222
1

:

)(:

)(:

xhdE

xmhaE

xnhbE







:
2

 Solve 3E  for 2h  Substitute result in 1E  and 2E  , 

simplify. 

mxmdaE

nxndbE

xmxdaE

xnxdbE

2:

2:

)(:

)(:

222
2

222
1

2222
2

2222
1









:
3

 Formulate 21 nEmE  and simplify using nmc  .













)(

)()(

:

2:

2:

222

222

222

222222
21

222
2

222
1

mndcnamb

mnccdnamb

nmmndnmnamb

nmmnndmdnambnEmE

nmxnmndnanE

mnxmnmdmbmE

Stewart’s result can be used to solve for the unknown line-
segment length d in terms of the known lengths mcba ,,,
and n .
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In pre-computer days, both all four theorems in this section
had major value to the practicing mathematician and 
scientist. Today, they may be more of an academic 
curiosity. However, this in no way detracts from those 
before us whose marvelous and clever reasoning led to 
these four historic landmarks marking our continuing 
Pythagorean journey.

Table 3.7 summarizes the four theorems presented 
in this section. A reversible proof in the context below is a 
proof that is can be independently derived and the used to 
prove the Pythagorean Theorem. 

WHO? WHAT?
PROOF

REVERSIBLE?
PROOF

SHOWN?

Heron:
Greek

Triangular Area in 
Terms of Sides

Yes No

Pappus:
Greek

Generalization for 
Parallelograms 
Erected on sides

Yes Yes

Kurrah:
Turkish

Generalization for 
Squares of Side 
Lengths

Yes Yes 

Stewart: 
Scottish

Length Formula for 
Line Segment 
Emanating from Apex

No
Not

Possible

Table 3.7: Pythagorean Generalizations
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3.7) The Five Pillars of Trigonometry

Language is an innate human activity, and 
mathematics can be defined as the language of 
measurement! This definition makes perfect sense, for 
humans have been both measuring and speaking/writing 
for a very long time.  Truly, the need to measure is in our 
‘blood’ just as much as the need to communicate. 
Trigonometry initially can be thought of as the mathematics 
of ‘how far’, or ‘how wide’, or ‘how deep’. All of the preceding 
questions concern measurement, in particular, the 
measurement of distance. Hence, trigonometry, as originally 
conceived by the ancients, is primarily the mathematical 
science of measuring distance. In modern times, 
trigonometry has been found to be useful in scores of other 
applications such as the mathematical modeling and 
subsequent analysis of any reoccurring or cyclic pattern.

Geometry, particularly right-triangle or Pythagorean 
geometry, was the forerunner to modern trigonometry. 
Again, the ancients noticed that certain proportions 
amongst the three sides of two similar triangles (triangles 
having equal interior angles) were preserved—no matter the 
size difference between the two triangles. These proportions 
were tabulated for various angles. They were then used to 
figure out the dimensions of a large triangle using the 
dimensions of a smaller, similar triangle. This one 
technique alone allowed many powerful things to be done 
before the Common Era: e.g. construction of the Great 
Pyramid, measurement of the earth’s circumference (25,000 
miles in today’s terms), estimation of the distance from the 
earth to the moon, and the precise engineering of roadways, 
tunnels, and aqueducts. ‘Nascent trigonometry’, in the form 
of right-triangle geometry, was one of the backbones of 
ancient culture.

In modern times trigonometry has grown far beyond 
its right triangle origins. It can now be additionally 
described as the mathematics describing periodic or cyclic 
processes.
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One example of a periodic process is the time/distance 
behavior of a piston in a gasoline engine as it repeats the 
same motion pattern some 120,000 to 200,000 times in a 
normal hour of operation. Our human heart also exhibits
repetitive, steady, and cyclic behavior when in good health. 
Thus, the heart and its beating motion can be analyzed 
and/or described using ideas from modern trigonometry as 
can any electromagnetic wave form.

Note: On a recent trip to Lincoln, Nebraska, I calculated that the 
wheel on our Toyota would revolve approximately 1,000,000 times 
in a twelve-hour journey—very definitely a cyclic, repetitive process.

Returning to measurement of distance, look up to 
the night sky and think ‘how far to the stars’—much like 
our technical ancestors did in ancient Greece, Rome, 
Babylon, etc. Trigonometry has answered that question in 
modern times using the powerful parallax technique. The 
parallax technique is a marriage of modern and old: careful, 
precise measurement of known distances/angles 
extrapolated across vast regions of space to calculate the 
distance to the stars. The Greeks, Romans, and 
Babylonians would have marveled! Now look down at your 
GPS hand-held system. Turn it on, and, within a few 
seconds, you will know your precise location on planet 
earth. This fabulous improvement on the compass operates 
using satellites, electronics, and basic trigonometry as 
developed from right triangles and the associated 
Pythagorean Theorem. And if you do not have a GPS device, 
you surely have a cell phone. Every fascinating snippet of 
cellular technology will have a mathematical foundation in 
trigonometry and the Pythagorean Theorem.

Trigonometry rests on five pillars that are 
constructed using direct Pythagorean principles or derivates 
thereof. These five pillars serve as the foundation for the 
whole study of trigonometry, and, from these pillars, one
can develop the subject in its entirety.

Note: In 1970, while I was in graduate school, a mathematics 
professor stated that he could teach everything that there is to know 
about trigonometry in two hours. I have long since realized that he 
is right. The five Pythagorean pillars make this statement so.
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To start a formal exploration of trigonometry, first 
construct a unit circle of radius 1r  and center )0,0( . Let 

t  be the counterclockwise arc length along the rim from the 

point )0,1(  to the point ),()( yxtP  . Positive values for  t
correspond to rim distances measured in the 
counterclockwise direction from )0,1(  to ),()( yxtP 
whereas negative values for t  correspond to rim distances 

measured in the clockwise direction from )0,1(  to 

),()( yxtP  . Let   be the angle subtended by the arc 

length t , and draw a right triangle with hypotenuse 

spanning the length from )0,0( to ),( yx  as shown in Figure 
3.15.

Figure 3.15: Trigonometry via Unit Circle

The first pillar is the collection definition for the six 
trigonometric functions. Each of the six functions has as 
their independent or input variable either   or t . Each 
function has as the associated dependent or output variable 
some combination of the two right-triangular sides whose 
lengths are x  and y .


)0,0( )0,1(

t

x

),()( yxtP 

y
1r
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The six trigonometric functions are defined as follows:

   1] yt  )sin()sin( 2]
y

t
1

)csc()csc( 

   3] xt  )cos()cos( 4]
x

t
1

)sec()sec( 

   5]
x

y
t  )tan()tan( 6]

y

x
t  )cot()cot(

As the independent variable t  increases, one eventually 

returns to the point )0,1( and circles around the rim a 

second time, a third time, and so on. Additionally, any fixed 

point ),( 00 yx  on the rim is passed over many times as we 

continuously spin around the circle in a positive or negative 

direction. Let 0t  or 0  be such that 

),()()( 0000 yxPtP   . Since 1r , one complete 

revolution around the rim of the circle is equivalent to 2
units and, consequently,  

...3,2,1:)2()( 00  nntPtP  . We also have that 

)360()( 0
0

0   PP . For )sin( 0t , this translates to 

)2sin()sin( 00 ntt   or )360sin()sin( 0
0

0   . Identical 

behavior is exhibited by the  five remaining trigonometric 
functions. 

In general, trigonometric functions cycle through the same 
values over and over again as the independent variable t
indefinitely increases on the interval ),0[   or, by the same 

token, indefinitely decreases on the interval ]0,( , 

corresponding to repeatedly revolving around the rim of the 
unit circle in Figure 3.15.
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This one characteristic alone suggests that (at least in 
theory) trigonometric functions can be used to model the 
behavior of any natural or contrived phenomena having an 
oscillating or repeating action over time such as the 
induced ground-wave motion of earthquakes or the induced 
atmospheric-wave motion due to various types of music or 
voice transmission.

Figure 3.16: Trigonometry via General Right Triangle

The six trigonometric functions also can be defined 
using a general right triangle. Let ABC  be an arbitrary 
right triangle with angle   as shown on the previous page 
in Figure 3.16. The triangle ABC  is similar to 

triangle  ),(),0,1(),0,0( yx . This right-triangle similarity 

guarantees:

   1]
AC

BCy


1
)sin( 2]

BC

AC

y


1
)csc(

   3]
AC

ABx


1
)cos( 4]

AB

AC

x


1
)sec(

   5]
AB

BC

x

y
)tan( 6]

AC

AB

y

x
)cot(


)0,0( )0,1(x

),( yx

y1


A B

C
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The following four relationships are immediately 
evident from the above six definitions. These four 
relationships will comprise our primitive trigonometric 
identities. 

   1]
)sin(

1
)csc(


  2]

)cos(

1
)sec(


 

   3]
)cos(

)sin(
)tan(


  4]

)sin(

)cos(
)cot(


 

Since the four trigonometric functions )csc( , )sec( , 

)tan( , and )cot(  reduce to nothing more than 

combinations of sines and cosines, one only needs to know 
the value of )sin( and )cos( for a given   in order to 

evaluate these remaining four functions. In practice, 
trigonometry is accomplished by table look up. Tables for 
the six trigonometric function values versus   are set up 

for angles from 00  to 090  in increments of '10  or less. 
Various trigonometric relationships due to embedded 
symmetry in the unit circle were used to produce 
trigonometric functional values corresponding to angles 

ranging from 090  to 0360 . Prior to 1970, these values were 
manually created using a book of mathematical tables. 
Nowadays, the painstaking operation of table lookup is 
transparent to the user via the instantaneous modern 
electronic calculator.

Our second pillar is a group of three identities, 
collectively called the Pythagorean identities. The 
Pythagorean identities are a direct consequence of the 
Pythagorean Theorem.  From the Pythagorean Theorem and 
the definitions of  )sin(t and )cos(t , we immediately see 

that

1)(cos)(sin 22  tt .
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This is the first Pythagorean identity. Dividing the identity 

1)(cos)(sin 22  tt , first by )(cos2 t , and a second time by 

)(sin 2 t   gives

)(csc1)(cot

&)(sec1)(tan
22

22

tt

tt




.

These are the second and third Pythagorean identities. All 
three Pythagorean identities are extensively used in 
trigonometric analysis in order to convert from one 
functional form to another on an as-needed basis when 
dealing with various real-world problems involving angles 
and measures of distances. In Section 4.3, we will explore a 
few of these fascinating real-world applications.

The addition formulas for )cos(   , )sin(  
and )tan(    in terms of )cos( , )sin( , )tan( , 

)cos( , and )sin( , and )tan(  comprise as a group the 

third pillar of trigonometry. 

Figure 3.17: The Cosine of the Sum

)0,0( )0,1(






 

)}sin(),{cos(  

)}sin(),{cos( 

)}sin(),{cos(  

1D

2D
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As with any set of identities, the addition formulas provide 
important conversion tools for manipulation and 
transforming trigonometric expressions into needed forms.
Figure 3.17 on the previous page is our starting point for 
developing the addition formula for the quantity 

)cos(   , which states

)sin()sin()cos()cos()cos(   .

Using Figure 3.17, we develop the addition formula via five 
steps.

:
1

 Since the angle    in the first quadrant is equal to 

the angle )(    bridging the first and fourth quadrants, 

we have the distance equality

21 DD  .

:
2

 Use the Pythagorean Theorem (expressed in analytic 
geometry form via the 2-D Distance Formula) to capture this 
equality in algebraic language.

22

22

21

)]}sin([){sin()}cos(){cos(

}0){sin(}1){cos(

)}]sin(),{cos()},sin(),[{cos(

)]0,1()},sin(),[{cos(

















D

D

DD

:
3

  Square both sides of the last expression:

22

22

)]}sin([){sin()}cos(){cos(

}0){sin(}1){cos(








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:
4

  Square where indicated.

)(sin)sin()sin(2)(sin

)(cos)cos()cos(2)(cos

)(sin1)cos(2)(cos

22

22

22













:
5

  Use the Pythagorean identity 1)(cos)(sin 22   , true 

for any common angle  , to simply to completion.

















)sin()sin()cos()cos()cos(

)sin()sin(2

)cos()cos(2)cos(2

)sin()sin(2

)cos()cos(22)cos(22

)sin()sin(2]1[)cos()cos(2]1[

1)cos(2]1[

)sin()sin(2)](sin)([sin

)cos()cos(2)](cos)([cos

1)cos(2)](sin)([cos

22

22

22

















The last development, though lengthy, illustrates the 
combined power of algebra and existing trigonometric 
identities in order to produce new relationships for the 
trigonometric functions. Replacing   with   and noting 

that

)sin()sin(

&)cos()cos(







from Figure 3.17 immediately gives the companion formula

 )sin()sin()cos()cos()cos( 
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Figure 3.17 can be used as a jumping-off point for 
an alternate method for simultaneously developing addition 
formulas for )cos(    and )sin(   . In Figure 3.18, 

the point )}sin(),{cos(    is decomposed into 

components.

Figure 3.18: An Intricate Trigonometric
Decomposition

This is done by using the fundamental definitions of )sin(
and )cos(  based on both general right triangles and right 

triangles having a hypotenuse of unit length as shown in 
Figure 3.16. The reader is asked to fill in the details on how 
the various side-lengths in Figure 3.18 are obtained—a 
great practice exercise for facilitating understanding of 
elementary trigonometric concepts. 

)0,0( )0,1(


)}sin(),{cos(  

)}sin(),{cos( 
)cos(

)sin(

)cos()sin(1 y



)cos()cos(1 x



)cos()sin(2 y

)sin()sin(2 x

x

y
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From  Figure 3.18, we have that




)sin()sin()cos()cos()cos(

)cos( 21


 xx

and




)cos()sin()cos()sin()sin(

)sin( 21


 yy

.

Using the trigonometric relationships )cos()cos(    and 

)sin()sin(    a second time quickly leads to the 

companion formula for )sin(   :

 )cos()sin()cos()sin()sin(  .

The addition formula for )tan(    is obtained from 

the addition formulas for )sin(    and )cos(    in the 

following fashion













)sin()sin()cos()cos(

)cos()sin()cos()sin(
)tan(

)cos(

)sin(
)tan(




















)tan()tan(1

)tan()tan(
)tan(

)cos()cos(

)sin()sin()cos()cos(
)cos()cos(

)cos()sin()cos()sin(

)tan(












We will leave it to the reader to develop the companion 
addition formula for )tan(   .
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The remaining two pillars are the Law of Sines and the Law 
of Cosines. Both laws are extensively used in surveying 
work and remote measuring of inaccessible distances, 
applications to be discussed in Section 4.3.

Figure 3.19: Setup for the Law of Sines and Cosines

Figure 3.19 is the setup diagram for both the Law of Sines 
and the Law of Cosines. Let ABC  be a general triangle 
and drop a perpendicular from the apex as shown. Then, for 
the Law of Sines we have—by the fundamental definition of 

)sin(  and )sin(  based on a general right triangle—that 













)sin()sin(

)sin()sin(:

)sin(

)sin(:

)sin(

)sin(:

3

2

1













ab

ab

ah
a

h

bh
b

h







a b

cyx 
 



h

x y
A B

C
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The last equality is easily extended to include the third 
angle   within ABC  leading to our final result.

Law of Sines

)sin()sin()sin( 
cab



The ratio of the sine of the angle to the side opposite the 
angle remains constant within a general triangle.

To develop the Law of Cosines, we proceed as follows 
using the same triangle ABC  as a starting point and 
recalling that )sin(bh  .

:
1

  Solve for y and x  in terms of the angle 

)cos(

)cos()cos(





bcycx

by
b

y





:
2

 Use the Pythagorean Theorem to complete the 
development.
   











)cos(2

)cos(2

)(sin)(cos)cos(2

)]sin([)]cos([

222

222

222222

222

222









bcbca

abbcc

abbbcc

abbc

ahx

The last equality is easily extended to include the third 
angle  , leading to our final result on the next page.
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Law of Cosines

)cos(2222 bcbca 

The square of the side opposite the angle is equal to the 
sum of the squares of the two sides bounding the angle 

minus twice their product multiplied by the cosine of the 
bounded angle.

Similar expressions can be written for the remaining two 
sides. We have

)cos(2

)cos(2
222

222





accab

abbac




.

The Law of Cosines serves as a generalized form of the 
Pythagorean Theorem. For if any one of the three angles 

(say   in particular) is equal to 090 , then 0)cos( 
implying that 

222

222 }0{2

bca

bcbca





In closing we will say that trigonometry in itself is a 
vast topic that justifies its own course. This is indeed how it 
is taught throughout the world. A student is first given a 
course in elementary trigonometry somewhere in high 
school or early college. From there, advanced topics—such 
as Fourier analysis of waveforms and transmission 
phenomena—are introduced on an as-needed basis 
throughout college and graduate school. Yet, no matter how 
advanced either the subject of trigonometry or associated 
applications may become, all levels of modern trigonometry 
can be directly traced back to the Pythagorean Theorem.
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3.8) Fermat’s Line in the Sand

Chapters 1, 2, and 3 have turned the Pythagorean 
Theorem ‘every which way but loose’. For in these pages, we 
have examined it from a variety of different aspects, proved 
it in a number of different ways, and developed some far-
reaching applications and extensions. In order to provide a 
fitting capstone, we close Chapter 4 with a mathematical
line in the sand, a world-renown result that not only states 
that which is impossible, but also subtlety implies that the 
Pythagorean Theorem is the only example of the possible.

Pierre de Fermat, a Frenchman, was born in the 
town of Montauban in 1601. Fermat died in 1665. Like 
Henry Perigal whom we met in Section 2.8, Fermat was a
dedicated amateur mathematician by passion, with his full-
time job being that of a mid-level administrator for the 
French government. It was Fermat’s passion—over and 
above his official societal role—that produced one of the 
greatest mathematical conjectures of all time, Fermat’s Last 
Theorem. This theorem was to remain unproved until the 
two-year period 1993-1995 when Dr. Andrew Wiles, an 
English mathematician working at Princeton, finally verified 
the general result via collaboration with Dr. Richard N. 
Taylor of The University of California at Irvine.

Note: A PBS special on Fermat’s Last Theorem revealed that Dr. 
Wiles had a life-long passion, starting at the age of 12, to be the 
mathematician to prove Fermat’s Last Theorem. Dr. Wiles was in his 
early forties at the time of program taping. Wiles proof of Fermat’s 
Last Theorem is 121 pages long, which exceed the combined length 
of Chapters 2 through 4.

So what exactly is Fermat’s Last Theorem? Before we 
answer this question, we will provide a little more historical 
background. A Diophantine equation is an algebra equation 
whose potential solutions are integers and integers alone. 
They were first popularized and studied extensively by the 
Greek mathematician Diophantus (250 ACE) who wrote an 
ancient text entitled Arithmetica.
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An example of a Diophantine equation is the Pythagorean 

relationship 222 zyx   where the solutions zyx ,,  are 

restricted to integers. We examined the problem of finding 

integer solutions to  222 zyx   in Section 4.2 when we 

studied Pythagorean Triples. Likewise, Diophantus himself 
examined Pythagorean Triples and wrote about them in his 
Arithmetica. The subject of Pythagorean Triples was the 
focus of Fermat’s studies sometime in 1637 (as the story 
goes) when he pondered a natural extension.

Fermat’s Fundamental Question

Since many sets of three integers zyx ,,  exist where 
222 zyx  , could it be that there exist a set of three 

integers zyx ,,  such that 333 zyx  ?  What about 
444 zyx  , etc.

For the cubic relationship 333 zyx  , one can come 

tantalizingly close as the following five examples show:

1375332302676

11010812791

1172138135

114413871

1986

333

333

333

333

333











.

But as we say in present times, almost does not count 
except when one is tossing horseshoes or hand grenades. 
Fermat must have quickly come to the realization that  

333 zyx  , 444 zyx   and companions constituted a

series of Diophantine impossibilities, for he formulated the 
following in the margin of his copy of Arithmetica.
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Fermat’s Last Theorem

The Diophantine equation
nnn zyx 

where x , y , z , and n  are all integers, 

has no nonzero solutions for 2n .

Fermat also claimed to have proof, but, alas, it was 
too large to fit in the margin of his copy of Arithmetica!
Fermat’s Theorem and the tantalizing reference to a proof 
were not to be discovered until after Fermat’s death in 
1665. Fermat’s son, Clement-Samuel, discovered his
father’s work concerning Diophantine equations and 
published an edition of Arithmetica in 1670 annotated with 
his father’s notes and observations.

The impossible integer relationship 

2:  nzyx nnn  became known as Fermat’s Last 

Theorem—a theorem that could not be definitively proved or 
disproved by counterexample for over 300 years until Wiles
closed this chapter of mathematical history in the two-year 
span 1993-1995. To be fair, according to current historians, 
Fermat probably had a proof for the case 3n  and the case 

4n . But a general proof for all 2n  was probably 
something way out of reach with even the best
mathematical knowledge available in Fermat’s day.

***

→
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The Pythagorean relationship  222 zyx  forever 

stands as the only solvable Diophantine equation having 
exactly three variables and like powers. We will call this 
‘Fermat’s Line in the Sand’.  Then again, suppose we add 
more terms on the left-hand side. Is Diophantine equality 
possible for power sums having a common exponent 2n ,
for example, a nontrivial  quartet of integers wzyx ,,,  where 

3333 wzyx  ?

The German mathematician Leonhard Euler 
(1707,1783) studied this issue and made an educated 
guess. In his famous Euler’s Conjecture, he simply stated 
that the number of terms on the left-hand side needed to 
guarantee a Diophantine solution was equal to the power 
involved.

Euler’s Conjecture

Suppose },1:{ kixi  is a solution set to the  Diophantine 

equation n
k

i

n
i zx 

1

where ix  are all integers.

Then we must have that nk  .

At first glance, Euler’s Conjecture seems reasonable. More 
terms provide the additional ‘degrees of freedom’ or ‘wiggle 
room’ needed to accommodate the more restrictive higher 
powers, better raising (no pun intended) one’s chances of 
producing an equality. And indeed, equalities are found. For 
we have

555555

44444

3333

222

1071008075743

35327231512030

6543

543









,

all examples of Euler’s Conjecture.
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However, Euler’s Conjecture did not stand the test of 
time as Fermat’s Last Theorem did. In 1966, Lander and 
Parker found a counterexample for 5n :

55555 1441331108427 

Two counterexamples for 4n  followed in 1988. The first 
was discovered by Noam Elkies of Harvard. The second, the 
smallest possible for a quartet of numbers raised to the 
fourth power, was discovered by Roger Frye of Thinking 
Machines Corporation.

4444 673,615,20960,187639,465,15440,682,2 

4444 481,422560,414519,217800,95 

Today, power sums—both equal and non-equal—provide a 
source of mathematical recreation of serious and not-so-
serious amateurs alike. A typical ‘challenge problem’ might 
be as follows:

Find six positive integers zyxwvu ,,,,,  satisfying the power 

sum 777777 zyxwvu  where  the associated linear 

sum zyxwvu   is minimal.

Table 3.7 on the next page displays just a few of the 
remarkable examples of the various types of power sums. 
With this table, we close Chapter 3 and our examination of 
select key spin-offs of the Pythagorean Theorem.

→
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# EXPRESSION

1 3333 5436 
2 333 173371 
3 333 704407 
4 321 531135 
5 321 571175 
6 4444 43611634 
7 5343 53433435 
8 321 895598 
9 55555 84745748,54 
10 213169   and 231961
11

2452025  and 452520 

12 3174913   and 173194 
13 23454321 676167611676 
14 22 33121233 
15 22 100990990100 
16 22 2353941294122353 
17 7654321 89764622646798 
18 4321 72422427 
19 333 591822221859 
20 3)43(343 

Table 3.7: Power Sums
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4) Pearls of Fun and Wonder

Pearls of ancient mind and wonder,
Time will never pillage, plunder,
Or give your soul to the worm—
Or worse yet, for nerds to keep
With their mental treasures deep
Where secret squares are cut asunder.

So, come good fun, have a turn,
Bring your gold, build and learn!

April 2005

4.1) Sam Lloyd’s Triangular Lake

Sam Lloyd was a famous American creator of 
puzzles, tricks and conundrums who produced most of his 
masterpieces in the late 1800s. Many of Lloyd’s puzzles 
have survived and actually thrived, having found their way 
into modern puzzle collections. Martin Gardner, of Scientific 
American fame, has been a tremendous preserver of Lloyd’s 
legacy to recreational mathematics. Recreational 
mathematics, one might classify that phrase as an 
oxymoron. Yet, back in the late 1800s, Lloyd’s heyday, 
people actually worked puzzles for evening relaxation, much 
like we moderns watch TV or play video games. The need to 
relax has always been there; how people fulfill the need is 
more a function of the era in which we live and the available 
technology that enables us to recreate.

One of Sam Lloyd’s famous creations is his 
Triangular Lake. Lloyd subtlety gives his readers two 
choices: solution by sweat and brute force, or solution by 
cleverness and minimal effort. The clever solution requires 
use of the Pythagorean Theorem. What follows is Lloyd’s
original statement:

“The question I ask our puzzlists is to determine how many 
acres there would be in that triangular lake, surrounded as 
shown in Figure 4.1 by square plots of 370, 116 and 74 
acres.



137

The problem is of peculiar interest to those of a mathematical 
turn, in that it gives a positive and definite answer to a 
proposition, which, according to usual methods produces one 
of those ever-decreasing, but never-ending decimal fractions.

Figure 4.1: Triangle Lake and Solution

In the year 2006, the Triangular Lake does not 
require a great deal of original thought to solve. Nowadays, 
we would say it is a ‘cookie cutter’ problem and requires no 
sweat whatsoever! One simply needs to apply Heron’s 

formula for triangular area, ))()(( asbsassA 
using a modern electronic calculator. The answer is 
available after a few keystrokes.

   

00037.11)70169.10)(53369.8)(06864.0(30402.19

))()((:

30402.19
2

74116370

2
:

60233.874

,&77033.10116,23538.19370:

3

2

1



















A

asbsassA

s

cba
s

c

ba







370
Acres

74
Acres 116

Acres

A

D C B

E F
5

4

7 10

Triangular
Lake
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We have achieved five-digit accuracy in ten seconds. 
Electronic calculators are indeed wonderful, but how would 
one obtain this answer before an age of technology?
Granted, Heron’s formula was available in 1890, but the 
formula needed numbers to work, numbers phrased in 
terms of decimal equivalents for those wary of roots. To 
produce these decimal equivalents would require the 
manual, laborious extraction of the three square 

roots 370 , 116 , and 74 , not to mention extraction the 
final root in Heron’s Formula itself.  Thus, a decimal 
approach was probably not a very good fireside option in 
1890. One would have to inject a dose of cleverness, a lost 
art in today’s brute-force electronic world.

Lloyd’s original solution entails a masterful 
decomposition of three right triangles. In Figure 4.1, the 
area of the triangular lake is the area of ABF , which we 

denote as  ABFA . 

Now:

EFCDRFBCAFEABDABF AAAAA  .

For ABD , we have that

370

370179 222

222







AB

AB

DBDAAB

Notice Lloyd was able to cleverly construct a right triangle 
with two perpendicular sides (each of integral length) 

producing a hypotenuse of the needed length 370 . This 
was not all he did!

For AFE , we have that

747475 222

222





AFAF

EFEAAF
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Finally, for FBC

116116104 222

222





FBFB

CBCFFB

Thus, our three triangles ABD , AFE , and FBC  form 
the boundary of the Triangular Lake. The area of the 
Triangular Lake directly follows




11)7)(4()10)(4()7)(5()17)(9( 2
1

2
1

2
1ABF

EFCDRFBCAFEABDABF

A

AAAAA
.

The truth of Lloyd’s problem statement is now evident: to 
those of a mathematical turn, the number 11 is a very 
positive and definitive answer not sullied by an irrational 
decimal expansion.

One might ask if it is possible to ‘grind through’ 
Heron’s formula and arrive at 11 using the square roots as 
is. Obviously, due to the algebraic complexity, Lloyd was 
counting on the puzzler to give up on this more brute-force 
direct approach and resort to some sort of cleverness.
However, it is possible to grind! Below is the computational 
sequence, an algebraic nightmare indeed.

Note: I happen to agree with Lloyd’s ‘forcing to cleverness’ in that I 
have given students a similar computational exercise for years. In 
this exercise requiring logarithm use, electronic calculators are 
deliberately rendered useless due to overflow or underflow of 
derived numerical quantities. Students must resort to ‘old fashion’ 
clever use of logarithms in order to complete the computations 
involving extreme numbers.

2

74116370

2
:

74,&116,370:

2

1









cba
s

cba




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





































2

1
2

2

1

3

)11674370)(11674370(

)370]74116([

4

1

)11674370)(74370116(

)37074116)(37074116(

4

1

))()((:

A

A

asbsassA

   

 

   

  









































11
4

44
1936

4

1

400,32336,34
4

1
180)74)(116(4

4

1

)180741162()180741162(
4

1

)11674116370116

116747437074

11637074370370(

)37074741162116(

4

1

2

1

2

1
2

1
2

2

1

2

1

A

A

A

A
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4.2) Pythagorean Magic Squares

A magic square is an array of counting numbers 
(positive integers) geometrically arranged in a square. 
Figure 4.2 shows a 4X4 magic square. Where is the magic 
in this square?

 1 15 6 12

8 10 3 13

11 5 16 2

14 4 9 7

Figure 4.2: Pure and Perfect 4X4 Magic Square

Answer: if one adds the four numbers in any one row, any 
one column, or along any one of the two diagonals—totaling 
10 different ways—one will obtain the same number 34  for 
each sum so done, called the magic sum.

Normal or Pure Magic Squares are magic squares where the 
numbers in the little squares are consecutive counting
numbers starting with one. Perfect 4X4 Magic Squares are 
magic squares having many additional four-number 
patterns that sum to 34 , such as the four corners of any 
smaller square embedded in the 4x4 square.  Figure 4.3
depicts a sampling of four-number patterns that sum to 34
for the magic square shown in Figure 4.2. 
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X X X X O X X O X X

O X X O O O

O X O X O O

O O O O O X O X X X

X X X X X O X O

X X O O X O O X

O O X X O X O X

O O O O O X X O

X X O O O X X X

X X X X X O O O

O O X X X O X X

O O O O O X O O

Figure 4.3: 4X4 Magic Patterns

The 4X4 magic square has within it several sum-of-
squares and sum-of-cubes equalities that provide additional 
examples of power sums as discussed in Section 3.8. 

1. The sum of the squares in the first row equals the sum 
of the squares in the fourth row: A similar equality 
holds for the second and third rows.

22222222 79414126151 

2. The sum of the squares in the first column equals the 
sum of the squares in the fourth column. A similar 
equality holds for the second and third columns.

22222222 721312141181 

3. The sum of the cubes for the numbers on the two 
diagonals equals the sum of the cubes for the numbers 
remaining within the square:

33333333

33333333

81149213615

123514716101





The reader is invited to verify all three power sums!
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Magic squares of all types have intrigued math 
enthusiasts for decades. What you see below in Figure 4.4
is a Pythagorean masterpiece that couples three magic 
squares of different sizes (or orders) with the truth of the 
Pythagorean Theorem. Royal Vale Heath, a well-known 
British puzzle maker, created this wonder in England prior 
to 1930. Of the fifty numbers used in total, none appears 
more than once. 

THE PYTHAGOREAN 3-4-5 WONDER SET OF 
THREE MAGIC SQUARES

5X5 magic sum is also 
174. Square the sum of 
twenty-five numbers to 

obtain 756,900

4X4 magic sum is 
also 174. Square 

the sum of sixteen 
numbers to 

obtain 484,416 16 22 28 34 74

3X3 magic 
sum is 174. 
Square the 
sum of nine 
numbers to 

obtain
272,484 36 43 48 47 33 73 20 21 27

61 54 59 49 46 37 42 25 26 32 72 19

56 58 60 39 40 51 44 71 18 24 30 31

57 62 55 50 45 38 41 29 35 70 17 23

222 543  & 900,756416,484484,272  !

Figure 4.4: Pythagorean Magic Squares
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4.3) Earth, Moon, Sun, and Stars

In this section, we move away from recreational use 
of the Pythagorean Theorem and back to the physical world 
and universe in which we live. In doing so, we will examine 
the power of trigonometry as a tool to measure distances. In 
particular, we are interested in inaccessible or remote 
distances, distances that we cannot ‘reach out and touch’ in 
order to measure directly. 

The first example is determining the height H of the 
flagpole in front of the local high school. A plethora of 
American trigonometry students throughout the years have 
been sent outside to measure the height of the pole, 
obviously an inaccessible distance unless you entice the 
little guy to shimmy up the pole and drop a plumb bob. Be 
careful, for the principal may be looking!

Figure 4.5 illustrates how we measured that old 
schoolhouse flagpole using the elementary ideas of 
trigonometry. We walked out a known distance from the 
base of pole and sighted the angle from the horizontal to the 
top of the pole. 

Figure 4.5: The Schoolhouse Flagpole

Note: Students usually performed this sighting with a hand-made 
device consisting of a protractor and a pivoting soda straw. In 
actual surveying, a sophisticated instrument called a theodolite is 
used to accomplish the same end.

500

B=25ft5ft

H?
A
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Once these two measurements are taken, the height of the 
flagpole easily follows if one applies the elementary 
definition of tan , as given in Section 3.7, to the right 
triangle depicted in Figure 4.5 to obtain the unknown 
length A.








ftftftH

ftftA

ftA

ft

A

79.34579.29:

79.29)19176.1()25(

)50tan()25(

)50tan(
25

:

2

0

0
1





A common mistake is the failure to add the height from 
ground level to the elevation of the sighting instrument.

Figure 4.6 shows a marked increase in complexity 
over the previous example. Here the objective is to measure 
the height H of a historic windmill that has been fenced off 
from visitors. To accomplish this measurement via the 
techniques of trigonometry, two angular measurements are 
made 25 feet apart resulting in two triangles and associated 
base angles as shown.

Figure 4.6: Off-Limits Windmill

500

B=25ft5f

H?
A

650

X
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The four-step solution follows. All linear measurements are 
in feet. 

























ftftAH

ftAA

AA

A
A

XA

A
XXA

X

A

XA

XA

XA

X

A

05.725:

.05.6779.2944427.0

55573.79.29

14451.2
19176.179.29

19176.179.29:

14451.2
14451.2

)65tan(:

19176.179.29

)19176.1()25(

)50tan()25(

)50tan(
25

:

4

3

0
2

0

0
1









Our next down-to-earth example is to find the 
straight-line distance L through a patch of thorns and 
nettles—most definitely an inaccessible distance—as shown 
in Figure 4.7.

Figure 4.7: Across the Thorns and Nettles

A=100ft

B= 120ft

L?

Thorns and 
nettles.

040
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Finding the inaccessible distance L requires the measuring 
of the two accessible distances A & B and included angle . 
Once these measurements are obtained, the Law of Cosines 
is directly utilized to find L. 

   







ftLL

L

ABBAL

556.7793.6014

)40cos()120)(100(2120100

)cos(2:

2

0222

222
1



---

Our next measurement, much more ambitious, was 
first performed by Eratosthenes (275-194 BCE), the 
Director of the Alexandrian Library in Egypt. Eratosthenes 
invented an ingenious methodology for determining the 
earth’s circumference. His methodology utilized basic 
trigonometric principles in conjunction with three 
underlying assumptions quite advanced for his time:

1) The earth was round
2) When sunrays finally reached the earth after 

traveling across the unknown void, they arrived as 
parallel beams.

3) Alexandria and the town of Syene (500 miles to the 
South) fell on the same meridian: an assumption not 
quite correct as shown in Figure 4.8. 

Figure 4.8: Eratosthenes’ Egypt

Alexandria

Syene
(Aswan)

Nile
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Figure 4.9 depicts Eratosthenes’ methodology. A mirror 
was placed at the bottom of a deep well at Syene. This 
mirror would reflect back the rays of the noonday sun to an 
observer during that time of year when the sun was shining 
directly overhead. This was time correlated with a second 
observation at Alexandria where the shadow length of an 
obelisk (of know height) was measured allowing 
determination of the sun’s incident angle.

Figure 4.9: Eratosthenes Measures the Earth

Eratosthenes reasoned that the circumferential distance 
from the obelisk at Alexandria to the well at Syene (500 

miles) represented 02.7 of the earth’s circumference. A 
simple proportion was then solved allowing the 
determination of the earth’s total circumference C. The 
earth’s radius R easily followed.

miles
miles

R

milesC
C

miles
O

O

3979
2

000,25
:

000,25
500

360

2.7
:

2

1










Eratosthenes came very close to modern measurements 
(The earth’s mean radius is miles3959 ) by this ingenious 
method now well over 2000 years old. It is a solid example 
of mathematics and natural science teaming to produce a 
milestone of rational thought in the history of humanity.

Parallel Sunrays

Parallel Sunrays

Shadow
Obelisk at 
Alexandria

7.20

7.20

Well at
Syene

Mirror

Sun

R & C=?
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Once we know the measurement of the earth’s radius, we
can immediately use the Pythagorean Theorem to calculate 
the view distance V to an unobstructed horizon as a 
function of the observer’s height H above the earth’s 
surface, Figure 4.10. 

Figure 4.10: View Distance to Earth’s Horizon

The view-distance calculation proceeds as follows.

2

22

2222

222

2

2

2
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HRHV

HRHV

HRHRRV

HRRV









Table 4.1 gives select view distances to the horizon as a 
function of viewer altitude. 

H V H V

5 ft. 2.73 miles 100,000 ft
387.71 
miles

100 ft 12.24 miles 150 miles 1100 miles

1000ft 38.73 miles 1000 miles 2986 miles

30,000 ft 212.18 miles R=3959 miles R3

Table 4.1: View Distance versus Altitude

R

R+H

V

Earth
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---
High above the earth, we see the moon hanging in 

the evening sky at an angle and inclination that varies 
according to latitude, date, and time. The ancient Greeks 
were the first to measure the distance to the moon and the 
moon’s diameter. They actually did this using several 
different ways. We will follow suit by employing the modern 
Law of Sines, utilizing it one of the same geocentric setups 
that the Greeks used 2000 years ago in order to make these 
two astronomical determinations. Today, our instrument of 
choice would be a theodolite in order to make the needed 
precision angular measurements. The Greeks actually had 
an ancient version of the same instrument, called an 
astrolabe, which allowed them to make the needed 
measurements in their day. Figure 4.11 shows our setup 
for both measurements.

Figure 4.11: Measuring the Moon

In order to measure the distance to the moon, first 
pick two points B and D on the earth’s surface a known 
distance apart. Figure 4.11 suggests 1000 miles, roughly 
the distance that the Greeks used.  Both points need to 
have either the same latitude or the same longitude. In the 
United States, two points of equal latitude (such as 400N) 
are probably a tad easily to locate than two points of similar 
longitude. Point D should correspond to a time of night 
where the full moon is straight overhead or squarely in the 
middle of the ecliptic as sighted by use of an astrolabe with 
the sighting point squarely in the center of the moon’s disk.

Moo
n

Earth

0.236200

3959miles 0.50
14.472280

Surface distance 
from B to D is 
1000miles

A 

B

Obelisk for measuring the Moon’s 
shadow in the absence of an astrolabe

CD

F14.472280

0.236200

Moon
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Simultaneously, an observer at point B would sight the 
center of the moon’s disk and ascertain the exterior angle 

FBC at shown. Modern email would make this an exciting 
exercise for amateur astronomers or high school students 
since these measurements can be communicated 
instantaneously. The ancient Greeks had no such luxury in 
that they had to pre-agree as to a date and time that two 
observers would make the needed measurements. Several 
weeks after that, information would be exchanged and the 
calculations performed. 

By the Law of Sines, we can find the distance BC  to 
the moon per the following computational sequence. 

milesBC

miles
BC

milesBC

BCD

AB

BAD

BC

5.002,240

)47228.14sin(
)23620.0sin(

3959

)23620.0sin(

3959

)47228.14sin(

)sin()sin(

0
0

00





















Notice that the ratio of the distance to the radius of the 
earth is given by the expression

62.60
AB

BC
,

a traditional value first obtained by the Greeks after several 
refinements and iterations. 

Once we have the distance to the moon, we can 
easily calculate the radius of the moon. Stand at point D
and measure the sweep angle between the moon’s two limbs 
sighting through a diameter.
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The commonly accepted value is about 2
1  degree, obtained 

by holding out your thumb and, by doing so, barely 

covering the lunar disk. Taking exactly half of 05.0 to 
complete one very huge right triangle, we obtain

milesRD

milesR

miles

R

moonmoon

moon

moon

20942

1047

)25.0tan(
5.002,240

0






The calculated diameter miles2094  is 66 miles shy of the 
true value. To illustrate the angular sensitivity associated 
with these results, suppose more sophisticated 
instrumentation indicates that the sweep angle between the 

two lunar limbs is actually 0515.0 , an increase of %3 . 
Revising the previous gives

milesD

milesR

miles

R

moon

moon

moon

26.2157

63.1078

)2575.0tan(
5.002,240

0






now only a couple of miles shy of the true value. When 
dealing with tiny angles, precision instrumentation is the 
key to accurate results. However, the underlying 
Pythagorean infrastructure is still the same four millennia 
after its inception!

---

We will now use the distance to the moon to obtain 
the distance to the sun. Like a series of celestial stepping-
stones, one inaccessible distance leads to a second 
inaccessible distance, each succeeding distance more 
extreme than the previous one.
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Figure 4.12: From Moon to Sun

Greek astronomers knew that the moon reflected sunlight 
in order to shine. Using the cosmological model shown in 

Figure 4.12, the Greeks surmised that  090ABC
during the first quarter moon (half dark-half light). By 
constructing the huge imaginary triangle ABC , the moon-

to-sun distance BC  could be obtained by the simple 
formula

)tan( BAC
BA

BC


assuming that the angle BAC  could be accurately 
measured. The Greeks tried and obtained a best value of 

087BAC , about six thumb widths away from the 
vertical. Modern instrumentation gives the value as 

085.89BAC . The next computation is a comparison of 
both the ancient and modern values for the moon-to-sun 
distance using the two angular measurements in Figure 
4.12.  

Note: Staring directly into the sun is a very dangerous proposition, 
so the Greeks were quite naturally limited in their ability to refine 
‘six thumb widths’.

A

B

C

ModernCAB

GreekCAB

:85.89

:87
0

0




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milesBC

BC

milesBC

BC

BACBABC

BAC
BA

BC

7.992,673,91

)85.89tan()5.002,240(:

5.520,579,4

)87tan()5.002,240(

)tan(

)tan(:

0
2

0

1

















Our ‘back-of-the-envelope’ computed value has the sun 
about 382  times further away from the earth than the 

moon. By contrast, the Greek estimate was about 19  times, 
a serious underestimate. However, even with an 
underestimate, it is important to understand that Greek 
geometry—again, Pythagorean geometry—was being used 
correctly. The failing was not having sophisticated 
instrumentation. Knowing the distance to the sun, one can 
easily obtain the sun’s diameter, whose disk also spans 

approximately 05.0 .

Note: The sun and moon have the same apparent size in the sky 
making solar eclipses possible.

milesD

milesR

miles

R

sun

sun

Sun

58.011,800

79.005,400

)25.0tan(
7.992,673,91

0






Using Figure 4.11, we invite the reader to calculate the earth-to-
sun distance using the Pythagorean Theorem and the modern value 
of the moon-to-sun distance shown above. 

---
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Figure 4.13: From Sun to Alpha Centauri

Earth, Moon, Sun, and Stars, the section title hints at a 
progressive journey using ever-increasing stepping stones.
The Greeks were limited to the known solar system.
Starting in the 1800s, increasingly sophisticated 
astronomical instrumentation made determination of stellar 
distances possible by allowing the measurement of very tiny 
angles just a few seconds in size, as depicted via the much 
magnified angle   in Figure 4.13. From the measurement 
of tiny angles and the building of huge imaginary 
interstellar triangles, astronomers could ascertain 
tremendous distances using a Pythagorean-based method 
called the parallax technique. Figure 4.13 illustrates the 
use of the parallax technique to find the distance to our 
nearest stellar neighbor, Alpha Centauri, about ly2.4 (light 

years) from the sun. 

The position of the target star, in this case Alpha Centari, is 
measured from two diametrically opposite points on the 
earth’s orbit. The difference in angular location against a 
backdrop of much farther ‘fixed’ stars is called the parallax 
angle . Half the parallax angle is then used to compute the 
distance to the star by the expression

A

B D

C
Earth at point C in its 
orbit about the sun

Earth at point A, six months later 
and diametrically opposite C

Sun

Alpha
Centauri

2
1

2
1

Parallax angle>
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)tan( 2
1

AC
BD 

Even for the closest star Alpha Centauri, parallax angles are 

extremely small. For  milesAC 000,000,184  and 

lyBD 2.4  or miles000,320,592,463,2 , we have

0

01
2
1

2
1

2
1

00085586.0

00042793.0)00000747.0(tan

00000747.0
000,320,592,463,2

000,000,184
)tan(

)tan(


















BD

AC

The final parallax value is less than one-thousandth 
of a degree. It converts to just 4.2   seconds. Being able to 
determine angles this small and smaller is a testimony to 
the accuracy of modern astronomical instrumentation. As 
Figure 4.13 would hint, Smaller values of parallax angles 
imply even greater distances. For example, a star where 

lyBD 600  (Betelgeuse in Orion is ly522  from our sun) 

requires the measurement of a incredibly small parallax 

angle whose value is 000000599.0 .

The instantaneous elliptical diameter AC  also needs 
precision measurement in conjunction with the parallax 
angle for a given star.  In the preceding examples, we 
rounded 7.992,673,91 to the nearest million and doubled, 

which resulted in milesAC 000,000,184 . For precise work 

in a research or academic environment, AC  would need to 
be greatly refined.
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4.4) Phi, PI, and Spirals

Our last section briefly introduces three topics that 
will allow the reader to decide upon options for further 
reading and exploration. The first is the Golden Ratio, or 
Phi. Coequal to the Pythagorean Theorem in terms of 
mathematical breadth and applicability to the natural 
world, the Golden Ratio deserves a book in its own right, 
and indeed several books have been written (see 
References). In the discussion that follows, we briefly 
introduce the Golden Ratio and explore two instances where 
the Golden Ratio finds its way into right and non-right 
triangles.

Figure 4.14: The Golden Ratio

Let s be the semi-perimeter of a rectangle whose 
width and height are in the proportion shown in Figure 
4.14. This proportion defines the Golden Ratio, praised by 
artists and scientists alike. The equation in Figure 4.14
reduces to a quadratic equation via the sequence
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2







wsws

wswssw
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Solving (left to reader) gives the following values for the 
width and height: 
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swswsh
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The Golden Ratio, symbolized by the Greek letter Phi ( ), is 

the reciprocal of
2

15 
, given by 61804.1

2

15



.

Figure 4.15: Two Golden Triangles

As stated, the Golden Ratio permeates mathematics 
and science to the same extent as the Pythagorean 
Theorem. Figure 4.15 depicts two appearances in a 
triangular context, making them suitable inclusions for this 
book.

Triangle ABC on the left is a right triangle where 

the vertical side has length ab equal to the geometric 

mean of the hypotenuse a  and the horizontal side b .

a

b

ab

A

B

C

C

B

A D
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a
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By the Pythagorean Theorem, we have:










 



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
b

a
ba

ba

baba

abba

2

51

0

)(
22

222

This last result can be summarized as follows.

If one short side of a right triangle is the geometric mean of 
the hypotenuse and the remaining short side, then the ratio 
of the hypotenuse to the remaining short side is the Golden 
Ratio . 

In triangle ABD  to the right, all three 
triangles ABD , ABC , and ACD  are isosceles. In 

addition, the two triangles ABD  and ACD  are similar: 

ACDABD  . We have by proportionality rules:

ba

baba

b

a

a

ba







022

Thus, in Figure 4.15, ABD  has been sectioned as to 
create the Golden Ratio  between the slant height and 

base for the two similar triangles ABC  and ACD .
Figure 4.16 aptly displays the inherent, unlabeled beauty 
of the Golden Ratio when applied to our two triangles. 
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Figure 4.16: Triangular Phi

---

The history of PI, the fixed ratio of the circumference 
to the diameter for any circle, parallels the history of the 
Pythagorean Theorem itself. PI is denoted by the Greek 
letter . Like the Golden Ratio Phi, PI is a topic of sufficient 
mathematical weight to warrant a complete book in its own 
right. As one might suspect, books on PI have already been 
written. In this volume, we will simply guide the reader to 
the two excellent ‘PI works’ listed in the References.

In this Section, we will illustrate just one of many 
different ways of computing Pi to any desired degree of 
accuracy. We will do so by way of a nested iterative 
technique that hinges upon repeated use of the Pythagorean 
Theorem. 

Figure 4.17 on the next page shows a unit circle 

whose circumference is given by 2C . Let 1T  be an 

isosceles right triangle inscribed in the first quadrant whose 

hypotenuse is 21 h . If we inscribe three right triangles 

congruent to 1T , one per each remaining quadrant, then a 

crude approximation to C  is given by 244 1 h .
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Figure 4.17: Pythagorean PI

By bisecting the hypotenuse 1h , we can create a smaller 

right triangle 2T whose hypotenuse is 2h . Eight of these 

triangles can be symmetrical arranged within the unit circle 

leading to a second approximation to C  given by 28h . A 

third bisection leads to triangle 3T  and a third 

approximation 316h . Since the ‘gap’ between the rim of the 

circle and the hypotenuse of the right triangle generated by 
our bisection process noticeably tightens with successive 
iterations, one might expect that the approximation for 2
can be generated to any degree of accuracy, given enough 
iterative cycles.

Note: Analysis is the branch of mathematics addressing ‘endless 
behavior’, such as our bisection process above, which can go on ad 
infinitum. Some situations studied in analysis run counter to
intuitively predicted behavior. Happily, the bisection process was 

shown to converge (get as close as we like and stay there) to 2  in 
the early 1990s. 
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What remains to be done is to develop a formula for 

1ih  that expresses 1ih  in terms of ih . Such a formula is 

called an iterative or recursive formula. Given a recursive 

formula and the fact that 21 h , we should be able to 

generate 2h , then 3h , and so on.

Figure 4.18: Recursive Hypotenuses

Figure 4.18 shows the relationship between two successive 
iterations and the associated hypotenuses. To develop our
recursive formula, start with triangle ACE , which is a 

right triangle by construction since line segment AD  bisects 
the angle BAE . We have by the Pythagorean Theorem:
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Continuing, we form an expression for the sideCD
associated with triangle CDE , also a right triangle.
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Again, by the Pythagorean Theorem
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After a good bit of algebraic simplification (left to reader).

The associated approximation for the actual circumference

2  is given by the formula i
i

i hC 12  . To establish the 

iterative pattern, we perform four cycles of numeric 
calculation.
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In words, to calculate each succeeding hypotenuse, simply 

add one more 2  to the innermost 2  within the nested 
radicals. To calculate each succeeding circumferential 
approximation, simply multiply the associated hypotenuse 
by 2 to one additional power.

i ih ic
1 1.414 5.6569
2 0.7654 6.1229
3 0.3902 6.2429
4 0.1960 6.2731
5 0.0981 6.2807
6 0.0491 6.2826
7 0.0245 6.2830
8 0.0123 6.2831
9 0.0061 6.2832
10 0.0031 6.2832

Table 4.2: Successive Approximations for 2

Table 4.2 gives the results for the first ten iterations. As 
one can see, the approximation has stabilized to the fourth 
decimal place. Successive iterations would stabilize 
additional decimal places to the right of the decimal point. 
In this way, any degree of accuracy could be obtained if one 
had enough time and patience. The true value of 2  to 

nine decimal places is 283185307.62  .
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If we stabilize one digit for every two iterations (which seems 
to be the indication by Table 4.2), then it would take about 
twenty iterations to stabilize our approximation to nine 
digits—a great closing challenge to the reader! 

---

Our last topic in Section 4.4 is that of Pythagorean 
Spirals. More art than mathematics, Pythagorean Spirals 
are created by joining a succession of right triangles as 
shown in Figure 4.19. All nine triangles have outer sides 
equal in length. In addition, the longer non-hypotenuse side 
of a larger triangle is equal to the hypotenuse of the 
preceding triangle. The generator for the ‘spiraling seashell’
in Figure 4.19 is an isosceles right triangle of side length
one. As one might imagine, the stopping point is arbitrary. 
Pythagorean Spirals make great objects for computer 
graphics programs to generate where coloration and precise 
alignment can be brought into play. Give it a try using more 
sophisticated software than the Microsoft Word utility that I 
used to generate the spiraling seashell. Enjoy!

Figure 4.19: Pythagorean Spiral

1

1
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Epilogue: The Crown and the Jewels

“Geometry has two great treasures;
One is the Theorem of Pythagoras:
The other, the division of a line into extreme and mean ratio.
The first we may compare to a measure of gold;
The second we may name a precious jewel.” Johannes Kepler

Saint Paul says his First Epistle to the Corinthians, 
“For now we see through a glass, darkly…”  Though the 
quote may be out of context, the thought freely standing on 
its own is carries the truth of the human condition. 
Humans are finite creatures limited by space, time, and the 
ability of a three-pond mass to perceive the wondrous 
workings of the Near Infinite…or Infinite. Even of that—
Near Infinite or Infinite—we are not sure. 

Figure E.1: Beauty in Order
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Mathematics is one of the primary tools we humans use to 
see through the glass darkly. With it, we can both discover 
and describe ongoing order in the natural laws governing 
the physical universe. Moreover, within that order we find 
comfort, for order implies design and purpose—as opposed 
to chaos—through intelligence much grander than anything 
produced on a three-pound scale. The study of mathematics 
as a study of order is one way to perceive cosmic-level 
design and purpose. But no matter how good or how 
complete the human invention of mathematics can be, it 
still allows just a glimpse through the darkened glass.

Figure E.1, a mandala of sorts, hints at this truth of
order as it applies to the Pythagorean Theorem—which is 
but a single pattern within the total synchronicity found 
throughout the cosmos. The four gradually shaded triangles 
speak of Pythagoras and one of the first Pythagorean proofs. 
Moreover, each triangle is golden via the ratio of hypotenuse 
to side, in deference to Kepler’s statement regarding the two 
great geometric treasures. Four also numbers the primary 
waveforms in the visible spectrum—red, blue, green, and 
yellow— which can be mathematically modeled by advanced 
trigonometric patterns (not addressed in this general-
readership volume). Since right triangles are intricately 
linked to circles, these two geometric figures are coupled in 
one-to-one fashion. A great circle, expressing unity, 
encompasses the pattern. White, as the synthesis of the 
visual rainbow, appropriately colors all five circles. But even 
within the beauty of pattern, linkage, and discovery as 
expressed by our mandala, there is black. Let this darkness 
represent that which remains to be discovered or that which 
is consigned to mystery.  Either way, it becomes part of who 
we are as humans as our innate finiteness seeks to 
comprehend that which is much greater.

It is my hope that this book has allowed a brief 
glimpse through the glass, a glimpse at a superbly simple 
yet subtle geometric pattern called the Pythagorean 
Theorem that has endured for 4000 years or more of 
human history.
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Not only has it endured, but the Pythagorean Theorem also 
has expanded in utility and application throughout the 
same 40 centuries, paralleling human intellectual progress 
during the same four millennia. In modern times, the 
Pythagorean Theorem has found its long-standing truth 
even more revered and revitalized as the theorem constantly 
“reinvents” itself in order to support new mathematical 
concepts.

Today, our ancient friend is the foundation for 
several branches of mathematics supporting a plethora of 
exciting applications—ranging from waveform analysis to 
experimental statistics to interplanetary ballistics—totally 
unheard of just two centuries ago. However, with a couple 
of exceptions, the book in your hands has explored more 
traditional trails. Like the color black in Figure E.1, there is 
much that you, the reader, can yet discover regarding the 
Pythagorean Proposition. The eighteen works cited in 
Appendix D provide excellent roadmaps for further 
explorations. We close with a classic geometric conundrum, 
Curry’s Paradox, to send you on your way: Given two sets of 
four identical playing pieces as shown in Figure E.2, how 
did the square in the top figure disappear?

Figure E.2: Curry’s Paradox
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Appendices

Figure A.0: The Tangram

Note: The Tangram is a popular puzzle currently marketed
under various names. Shown above in two configurations,

the Tangram has Pythagorean origins.
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A] Greek Alphabet

GREEK LETTER

Upper Case Lower Case

ENGLISH 
NAME

Α α Alpha
Β β Beta
Γ γ Gamma
Δ δ Delta
Ε ε Epsilon
Ζ ζ Zeta
Η η Eta
Θ θ Theta
Ι ι Iota
Κ κ Kappa
Λ λ Lambda
Μ μ Mu
Ν ν Nu
Ξ ξ Xi
Ο ο Omicron
Π π Pi
Ρ ρ Rho
Σ σ Sigma
Τ τ Tau
Υ υ Upsilon
Φ φ Phi
Χ χ Chi
Ψ ψ Psi
Ω ω Omega
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B] Mathematical Symbols

SYMBOL MEANING

 Plus or Add
- Minus or Subtract or Take Away

 Plus or Minus: do both for two results

 / Divide

 · Multiply or Times

{ }or[ ]or ( ) Parentheses 

 Is equal to

 Is defined as

 Does not equal

 Is approximately equal to

 Is similar too

 Is greater than

 Is greater than or equal to

 Is less than

 Is less than or equal to
1

 , 
2

 Step 1, Step 2, etc.

 Implies the following

BA  A implies B

BA  B implies A

BA  A implies B implies A

Sign for square root

n Symbol for nth root

|| Parallel

 Perpendicular

 Angle

 Right angle

 Triangle
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C] Geometric Foundations

The Parallel Postulates

1. Let a point reside outside a given line. Then there is 
exactly one line passing through the point parallel to the 
given line.

2. Let a point reside outside a given line. Then there is 
exactly one line passing through the point perpendicular 
to the given line.

3. Two lines both parallel to a third line are parallel to 
each other.

4. If a transverse line intersects two parallel lines, then 
corresponding angles in the figures so formed are 
congruent.

5. If a transverse line intersects two lines and makes 
congruent, corresponding angles in the figures so 
formed, then the two original lines are parallel.

    

Angles and Lines

1. Complimentary Angles: Two angles  ,  with 
090  .



 

0180 




090 
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2. Supplementary Angles: Two angles  ,  with 
0180 

3. Linear Sum of Angles: The sum of the two angles  ,
formed when a straight line is intersected by a line 

segment is equal to 0180
4. Acute Angle: An angle less than 090
5. Right Angle: An angle exactly equal to 090
6. Obtuse Angle: An angle greater than 090

Triangles

1. Triangular Sum of Angles: The sum of the three interior 

angles  ,,  in any triangle is equal to 0180
2. Acute Triangle: A triangle where all three interior 

angles  ,,  are acute

3. Right Triangle: A triangle where one interior angle from 

the triad  ,, is equal to 090
4. Obtuse Triangle: A triangle where one interior angle 

from the triad  ,,  is greater than 090
5. Scalene Triangle: A triangle where no two of the three 

side-lengths cba ,, are equal to another

6. Isosceles Triangle: A triangle where exactly two of the 
side-lengths cba ,,  are equal to each other

7. Equilateral Triangle: A triangle where all three side-
lengths cba ,, are identical cba   or all three angles 

 ,,  are equal with 060 

 


ab

c

0180 
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8. Congruent Triangles: Two triangles are congruent 
(equal) if they have identical interior angles and side-
lengths

9. Similar Triangles: Two triangles are similar if they have 
identical interior angles

10. Included Angle: The angle that is between two given 
sides

11. Opposite Angle: The angle opposite a given side
12. Included Side: The side that is between two given angles
13. Opposite Side: The side opposite a given angle 

Congruent Triangles

Given the congruent two triangles as shown below

1. Side-Angle-Side (SAS): If any two side-lengths and the 
included angle are identical, then the two triangles are 
congruent.

2. Angle-Side-Angle (ASA): If any two angles and the 
included side are identical, then the two triangles are 
congruent.

3. Side-Side-Side (SSS): If the three side-lengths are 
identical, then the triangles are congruent.

4. Three Attributes Identical: If any three attributes—side-
lengths and angles—are equal with at least one attribute 
being a side-length, then the two triangles are 
congruent. These other cases are of the form Angle-
Angle-Side (AAS) or Side-Side-Angle (SSA).

 


ab

c
 


de

f
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Similar Triangles

Given the two similar triangles as shown below

1. Minimal Condition for Similarity: If any two angles are 
identical (AA), then the triangles are similar.

2. Ratio laws for Similar Triangles: Given similar triangles 

as shown above, then 
d

a

f

c

e

b


Planar Figures

A  is the planar area, P is the perimeter, n is the number of 
sides.

1. Degree Sum of Interior Angles in General Polygon:

]2[1800  nD

2. Square: sPsA 4:2  , s is the length of a side

 

ab


c  


de

f

5n 6n
0

0

7206

5405





Dn

Dn

s
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3. Rectangle: hbPbhA 22:  , hb & are the base and 
height

4. Triangle: bhA 2
1 , hb &  are the base and altitude

5. Parallelogram: bhA  , hb &  are the base and altitude

6. Trapezoid: hbBA )(2
1  , bB &  are the two parallel 

bases and h is the altitude

7. Circle: rPrA  2:2   where r  is the radius, or 
dP   where rd 2 , the diameter.

8. Ellipse: abA  ; ba & are the half lengths of the major 
& minor axes

b

h

h

b

B

b
h

r

a
b

b

h
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Topical Index
A
Analytic Geometry

Defined 30
Demonstrated on Pythagoras' proof 31-32

Astronomy
Distance from earth to moon 150-151
Distance from moon to sun 152-154
Distance from sun to Alpha Centauri 155-156
Eratosthenes measures the earth 147-148
Quote by Johannes Kepler 166
Radius of the moon 151-152
View distance to earth's horizon 148-149

C
Circle

One of three symmetric planar figures 17

D
Diophantine Equation

Discussed 131-133
Distance Formula

Developed from Pythagorean Theorem 100
Used to develop trig addition formulas 122-127

E
Euclidean Metric

Pythagorean example of 69
Taxi-cab example of 69
Rectangular example of 69
Calculus based on other than Pythagorean 69-70

Euler's Conjecture
Counterexamples to 134
Statement of 133

F 
Fermat's Last Theorem 

Statement of 132
Andrew Wiles proved 130
Richard Taylor's role in proving 130
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G
Golden Ratio

Defined and algebraically developed 157-158
Golden Triangles

Defined 159
Two examples of 158-159

H
Heron's Formula

Developed from Pythagorean Theorem 105-107
Used to solve Lloyd's Triangular Lake 137, 139-140

Hero's Steam Engine
Described with illustration 104-105

I
Inscribed Circle Theorem

Pythagorean radius in context 97
Reaffirmed by Cauliflower Proof 79
Statement and proof 96

K
Kurrah's Theorem

Statement and proof 111-112
Used to prove Pythagorean Theorem 112

L
Law of Cosines

Derived from Pythagorean Theorem 128-129
Used in thorns-and-nettles problem 146-147

Law of Sines
Derived 127-128

M
Magic Squares

General discussion 141-142
Mathematicians

Andrew Wiles 130
Apollonius 36
Archimedes 36, 47
Bertrand Russell 36
Bhaskara 23, 53-54
Eratosthenes 147-148
Euclid 35, 36, 84
Galileo Galilei 88
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Mathematicians (cont)
Henry Perigal 61-65
Heron 104-107
Johannes Kepler 166
Legendre 41, 58-60
Leonardo da Vinci 55-57
Leonhard Euler 133
Liu Hui 45-47
Loomis, Elisha 16, 63, 68-70
Mathew Stewart 112-113
Pappus 107
Pierre de Fermat 130-132
President Garfield 66-77
Pythagoras 27-35
Richard Taylor 130
Royal Vale Heath 143
Sam Lloyd 136
Thabit ibn Kurrah 49-52, 111
Three greatest 47

Mean
Arithmetic definition 101,103
Geometric definition 101,103
Harmonic definition 101,103

P
Pappus' Theorem

Statement and proof 107-109
Used to prove Pythagorean Theorem 110

Poetry
Compared to prose 13-14
Edna St. Vincent Millay 26
"Euclid Alone Has Looked… " 26
"Euclid's Beauty Revisited"© 87
"From Earth to Love" © 3
"Love Triangle" © 27
"Pearls and Posers"©  136
Relation to mathematics text 14
"Significance" © 4

Power Sums
Discussed 134-135

Puzzles
Game Boy™ Boxel™ 47
Curry's Paradox 168
Kurrah's proof as source for 52
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Puzzles (cont)
Pythagorean Magic Square by Royal Vale Heath 143
Stomachion 47-48
Tangram 169
The Devil's Teeth © 52
Transformers™ 49
Triangular Lake by Sam Lloyd 136-140

Pythagorean
Book: The Pythagorean Proposition 16
Converse

As presented and proved by Euclid 42-44
Generalized via Cauliflower Proof 80-83

Means
Definition 101-103
Geometric interpretation 101-103

Primal pattern conjectured 19
Quartets

Definition and formulas for 99
Radius

Definition and table 97
Spirals

Defined and illustrated 165
Tiling

First explained 62-65
Triples

Definition and properties 90-95
Composite 93-95
Formulas for generating 91
Primitive 93-95
Primitive twin 93-95

Use of tem "perfection" with respect to 25-26

Pythagorean Theorem
Algebraic square-within-a-square proof 32
Archimedean origin speculated 47-48
As "Crown Jewel" 86-87, 166-168
As a Diophantine equation 132
As known prior to Pythagoras 27-28
As presented in Euclid's The Elements 36-37
Sutton's embedded-similarity proof 59-60
Basis for Pythagorean identities 121-122
Bhaskara's algebraic-dissection proof 53-54
Categories of Pythagorean proofs tabularized 86
Cauliflower Proof 70-79
Characterization of dissection proof 31-32
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Pythagorean Theorem (cont)
Converse formally stated 42
Converse proved per Euclid 43-44
Distance formula as byproduct 100
Earth-to-sun distance 154
Egyptian 3-4-5 knotted rope 27-28
Equivalency to other theorems tabularized 115
Euclid's original Windmill Proof 37-39
Euclid's Windmill Proof diagram first presented 1
Euclid's Windmill Proof first mentioned 35
Euler's Conjecture as spin off 133-134
Extension to figures with similar areas 88
Fermat's Last Theorem as spin off 130-133
First proof by Pythagoras 29-30
First proof by Pythagoras enhanced by algebra 31
As foundation of trigonometry 116-118
Garfield's trapezoidal dissection proof 66-67
Generalized statement via Cauliflower Proof 80-82
Henry Perigal's tiling proof 63-65
Initial discovery speculated 23
Initial statement of 24
Kurrah's bride's-chair proof 49-51
Legendre's embedded-similarity proof 58-59
Leonardo da Vinci's asymmetric proof 55-57
Liu Hui's packing proof 45-47
Mosaic entitled "Pythagorean Dreams" 2
Non-satisfaction by non-right triangles 2 5-26
Power sums as spin off 134-135
Pre-algebraic visual inspection proof 23-24
Proved by Kurrah's Theorem 112
Proved by Pappus' Theorem 110
Pythagorean Magic Square 143
Rectangular dissection proof 33
Some proofs can be in several categories 87
Speculative genesis 17-26
Three-dimensional version and proof 98
Twin-triangle dissection proof 34-36
Used to calculate PI 160-164
Used to define golden triangles 158-160
Used to derive Law of Cosines 128-129
Used to develop Heron's Formula 105-107
Used to develop trigonometric addition formulas 122-126
With respect to amateur mathematicians 13
With respect to modern technology 13
Windmill-light proof using analytic geometry 40-41
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Pythagorean Theorem Proofs
Algebraic

First explained 53-54
Bhaskara's algebraic dissection proof 53-54

Calculus
Cauliflower Proof 70-79
Cauliflower Proof logic links 79
First explained 68-69
Diagram, Carolyn's Cauliflower 70-71, 75
Elisha Loomis states impossibility of 68-69

Construction
First explained 37
Windmill using analytic geometry 40-41
Euclid's original Windmill Proof 37-39
Leonardo da Vinci's asymmetric proof 55-58

Dissection
Bride's Chair traditional classification 49
Dissection Order (DR) system explained 32
Garfield's trapezoidal dissection proof 66-67
Square-within-a-square proof 31
Triangles-within-a-rectangle proof 33
Twin-triangle proof by Watkins 34-35

Packing
Conjectured origin of Liu Hui's proof 47-48
First explained 46-47

Shearing
First explained 83
Sutton's embedded-similarity Proof 59-61
Euclid's Windmill and shearing proofs 84

Similarity
First explained 41
Illustrated 84-85
Legendre's embedded-similarity proof 58-59
Exploited in windmill-light proof 41

Tiling
First explained 63-64
Henry Perigal's tiling proof 63-66
Infinite number of 63

Transformer
Alternate classification of bride's-chair 49
Kurrah's "Operation Transformation" 50-51
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Q
Quadratic

Equation 14-15
Formula 14-15

R
Rectangle

Partitioned into right triangles via a diagonal 21
Four used to make square with square hole 22

S
Similar Figure Theorem

Constructed on sides of right triangle 88-89
Square

Four suggested planar actions/movements 18
One of three symmetric planar figures 17
Partitioned and subsequently replicated 19
Partitioned into right triangles via a diagonal 18-19

Stewart's Theorem
Statement and proof 113-114
Not equivalent to Pythagorean Theorem 113
Requires Pythagorean Theorem to prove 113

T
Tombstone

Henry Perigal's 61-62
Triangle

Equilateral
One of three symmetric planar figures 17

Pythagorean
Definition 90
Equal area 95
Equal perimeter 95
Area numerically equal to perimeter 91

Right
Definition and angular properties 20-21
Formed from rectangle via a diagonal 21
Hypotenuse 22

Right Isosceles
Created from square via a diagonal 18-19

Trigonometry
Addition formulas 122-126
Distance from earth to moon 150-152
Distance from moon to sun 152-154
Distance from sun to Alpha Centauri 155-157
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Trigonometry (cont)
Eratosthenes measures the earth 147-148
Law of Cosines 128-129
Law of Sines 127-128
PI calculated using Pythagorean Theorem 160-164
Primitive identities 121
Pythagorean identities 121-122
Radius of the moon 151-153
Right-triangle definitions of trig functions 120-121
Schoolhouse flagpole problem 144-145
Thorns-and-nettles problem 146-147
Unit-circle definitions of trig functions 118-119
View distance to earth's horizon 148-150
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