Add It Up!
 Magic Squares

 By Wizard John

2	7	6
9	5	1
4	3	8

Produced and Published by the:
WPAFB Educational Outreach Office
Building 196
Wright-Patterson AFB, Ohio 45433-7542
(This Page Blank)

Notice Page

All material in this booklet is public domain and may be duplicated without expressed permission of the WPAFB Educational Outreach Office. Our only request is that the enclosed material be used for the continuing enhancement of inquisitive American mindsboth young and old!

olcarus...

I ride high...
With a whoosh to my back
And no wind to my face,
Folded hands
In quiet rest-
Watching...O Icarus...
The clouds glide by,
Their fields far below
Of gold-illumed snow,
Pale yellow, floating moon
To my right-evening sky.
And Wright... O Icarus...
Made it so-
Silvered chariot streaking
On tongues of fire leaping-
And I will soon be sleeping
Above your dreams..... Sparks 2001
(This Page Blank)

Wright-Patterson Air Base and WPAFB Educational Outreach

Wright-Patterson Air Force Base, near Dayton, Ohio, is one of the nation's most important military installations. The base is headquarters for a vast, worldwide logistics system and is the foremost research and development center in the U.S. Air Force. Steeped in tradition, WPAFB has been a leader in military aviation development from the time of airplane inventors Wilbur and Orville Wright, who lived in Dayton, to today's aerospace age.

The Wright-Patterson AFB Educational Outreach Office was established to share the base history, experience and capabilities with the K-12 educational community through internal programs, partnerships and individual development. Our mission: To facilitate partnerships with the K-12 educational community to increase student awareness and excitement in all areas of math, science, aviation, and aerospace!

Phone: 937-656-2273
Web: wpafbstem.com

Note: This document along with other WPAFB Educational Outreach resources may be downloaded from the above site
(This Page Blank)
Table of Contents
1] The 3x3 Magic Square 1
1.1 Why this Square is Magic 1
1.2 Challenges for Those in Grade School 2
1.3 Additional Challenges for Those in Middle School 3
1.4 Additional Challenges for Those in High School 3
2] The 4×4 Magic Square 4
2.1 Bigger Means More Magic 4
2.2 Challenges for Those in Grade School 5
2.3 Additional Challenges for Those in Middle School 5
2.4 Additional Challenges for Those in High School 5
3) The Perfect 4x4 Magic Square 6
3.1 Add Up More Squares and Diagonals! 6
3.2 Challenges for Those in Grade School 7
3.3 Additional Challenges for Those in Middle School 7
3.4 Additional Challenges for Those in High School 8
4] The Perfect 5x5 Magic Square 9
4.1 Add Up Stars and Rhomboids 9
4.2 Challenges for Those in Grade School 10
4.3 Additional Challenges for those in Middle School 11
4.4 Additional Challenges for Those in High School 11
5] A Nested 5x5 Magic Square 11
6] Ben Franklin's 8x8 Magic Square 12
7] A Nested 9x9 Magic Square 13
8J Two Magic Squares for Reference 14
9] One Great Magic-Square Resource Book 14
(This Page Blank)

1] The 3x3 Magic Square

1.1 Why This Square is Magic

Draw a large blank square having three rows and three columns. This splits the big square into nine little squares. Then enter the first nine counting numbers as shown:

2	7	6
9	5	1
4	3	8

The result is called a 3×3 magic square (read "three by three"). Why is this square magic? Add the three numbers in any one row, or any one column, or along any one of the two diagonals. If you do this, you will get the exactly the same number, which is 15 . The number 15 is called the magic sum. The three side-by-side magic squares below show how the three numbers add up to 15 for the first row, the third column, and the downward diagonal going from left to right.

Activity: Find the total number of ways that this square adds up to 15.
Magic squares have been around for a long time. Most historians agree that they originated in China many centuries before the birth of Christ. Chinese tradition holds that the Emperor Yu saw a mystical three by three pattern on the back of a tortoise as it sunned itself on the bank of the Yellow river. The time that this happened was about 2200 B.C. The pattern that Emperor Yu saw became known as the lo-shu, which had a pretty arrangement of dots in each of the nine little squares.

The number of dots in each little lo-shu square is equal to the actual number in the same little square today. Two of the lo-shu patterns are

which represent the numbers 5 and 6 . These little groupings of dots are what legend claims Emperor Yu saw on the back of the tortoise.

Activity: Create a "lo-shu style" 3x3 magic square in the blank below. Represent the numbers 1 through 9 by cool patterns of dots, stars, happy faces, etc.

My "lo-shu" Magic Square

1.2 Challenges for Those in Grade School

1. Add up all the numbers in the $3 x 3$ magic square. What is the total?
2. Divide the total obtained in Question 1 by 3 . What number do you get as an answer? Do you recognize this number? Why do you think it appeared?
3. Using nine consecutive counting numbers, create a 3×3 magic square where the three rows, the three columns, and the two diagonals all add up to the magic sum 18.
4. Using nine consecutive counting numbers, create a 3×3 magic square where the three rows, the three columns, and the two diagonals all add up to the magic sum 48.

1.3 Additional Challenges for Those in Middle School

1. Can you make a 3×3 magic square having a magic sum equal to 100 using nine consecutive counting numbers? Why or why not?

Pure or Normal Magic Squares are magic squares where the numbers in the little squares are consecutive whole numbers starting with the number 1. The magic square that you are to create in Challenge 2 is not a pure magic square.
2. Create a 3×3 magic square using the nine prime numbers $5,17,29,47,59$, 71, 89, 101, and 113. Hint: First determine the magic sum by adding up all the numbers and dividing by \qquad ?
3. Show that you can not make a 3×3 magic square using the first nine prime numbers: $2,3,5,7,11,13,17,19,23$.
4. Explain why the book starts with a $3 x 3$ magic square. Hint: Show that it is impossible to make a $2 x 2$ pure magic square or any sort of $2 x 2$ magic square.

Am I Possible?

5. Show that the sum of the squares in the first row is equal to the sum of the squares in the third row (i.e. $2^{2}+7^{2}+6^{2}=4^{2}+3^{2}+8^{2}$). What is the common sum? Likewise, show that the sum of the squares in the first column is equal to the sum of the squares in the last column.

1.4 Addititional Challenges for Those in High School

1. Prove that the number in the center of the 3×3 magic square must be 5 .
2. Prove that the magic sum for a $N x N$ pure magic square is given by the expression $\frac{N\left(1+N^{2}\right)}{2}$. Hint: First show that the sum of the first n consecutive integers is given by $\frac{n(n+1)}{2}$.

2] The 4x4 Magic Square

2.1 Bigger Means More Magic

After several centuries, the 3×3 magic square made its way out of China and entered the Indian subcontinent. From India, it traveled on to Arabia and eventually into medieval Europe. During its journey, ancient mathematicians discovered that the 3×3 magic square could be increased in size to a 4×4 Magic Square. The mathematicians also discovered-unlike the 3×3 pure magic square-that there was more than one way of constructing a 4×4 pure magic square using the first 16 counting numbers $1,2,3,4,5,6,7,8,9,10,11,12,13$, $14,15,16$. Below are two out of 880 possible such patterns.

2	7	11	14
16	9	5	4
13	12	8	1
3	6	10	15

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

The magic square on the right is a very famous 4×4 magic square. It first appeared in an engraving entitled "Melancholia". The engraving was done by the German Albrecht Durer in the year 1514 and is shown to the right. Can you see the date in the square? 4×4 magic squares are just like 3×3 magic squares in that the four numbers in each row, in each column, and in each diagonal all add up to the same magic sum.

Here are three starter activities:

1. Find the magic sum for a 4×4 magic square
2. Find the total number of ways rows, columns, and diagonals can add up to the magic sum
3. Sum all the numbers in the 4×4 magic square.
 How many times the magic sum is this?

2.2 Challenges for Those in Grade School

1. Since there are 280 different ways of making a 4×4 pure magic square, can you create a 4×4 magic square not shown in this booklet?
2. Make a 4×4 magic square (not a pure magic square) whose magic sum is 38 .
3. Make a 4×4 magic square whose magic sum is 78 .
4. Make a 4×4 magic square whose magic sum is 102.

2.3 Additional Challenges for Those in Middle School

1. In the Albrecht Durer magic square (enlarged to the right as it appears in the engraving Melancholia), show that the sum of the squares in the first row is equal to the sum of the squares in the forth row (i.e. $16^{2}+3^{2}+2^{2}+13^{2}=4^{2}+15^{2}+14^{2}+1^{2}$). Show the sum of the squares in the second row is equal to the sum of the squares in the third row.
2. Show that a similar sum-of-the-squares equality holds for the columns of the Durer square.

3. Finally, does a similar sum-of-squares equality exist for the numbers on the two diagonals?
4. Does this same overall sum-of-squares property hold for the magic square pictured to the left of the Durer square on the previous page? For rows? For columns? For diagonals?

2.4 Addititional Challenges for Those in High School

1. Given that you have a 4×4 magic square, how many new magic squares can be generated from the given square by doing one or more of the following: interchanging rows, interchanging columns, and reflecting the square in one of four different ways as shown below?

3] The Perfect 4x4 Magic Square

The 4×4 magic square below "adds up" its rows, columns, and diagonals as it should. But, it adds up in a many more ways as we shall now illustratemaking the pure perfect!

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

3.1 Add Up More Squares and Diagonals

First, we will review the three necessary ways by simply using the definition of what it means to be a magic square.

Rows

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

Columns

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

Below are three new ways. All four corners associated with any $2 \times 2,3 \times 3$, or 4×4 square embedded within our big square also adds up to the magic sum.

2×2 Squares				3×3 Squares				One 4×4 Square			
1	15	6	12	1	15	6	12	1	15	6	12
8	10	3	13	8	10	3	13	8	10	3	13
11	5	16	2	11	5	16	2	11	5	16	2
14	4	9	7	14	4	9	7	14	4	9	7

Here are some more new ways. "Broken Diagonals" also add up to the same magic sum.

Broken Diagonal

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

Broken Diagonal

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

Broken Diagonal

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

Broken Diagonal

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

Broken Diagonal

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

Broken Diagonal

1	15	6	12
8	10	3	13
11	5	16	2
14	4	9	7

Notice that each new pattern still adds up four numbers to achieve the same magic sum.

3.2 Challenges for Those in Grade School

1. Find the total number of ways that all the patterns shown (including the three necessary patterns) add up to the magic sum.
2. Can you find any other neat patterns where four numbers in the pattern add up to the magic sum?

3.3 Additional Challenges for Those in Middle School

1. How many of the sum-of-squares equalities still hold with respect to rows, columns, and diagonals associated with our perfect 4×4 magic square?
2. How many additional sum-of-square equalities can you discover within our new "add-it-up" patterns?

3.4 Addititional Challenges for Those in High School

1. By adding up all the various possibilities, show that the Albrecht Durer square (below) is a perfect 4×4 magic square.

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

2. Show that the sum-of-squares for the eight numbers on the two diagonals equals the sum-of-squares for the eight numbers not on the two diagonals.
3. Show that the sum-of-cubes for the eight numbers on the two diagonals is equals the sum-of-cubes for the eight numbers not on the two diagonals (hint: the sum of cubes for the first row is given by $16^{3}+3^{3}+2^{3}+13^{3}$).
4. Are there any other patterns of any sort that you can discover within Durer's awesome square?

A 4×4 heterosquare is just the opposite of a magic square in that none of the rows, columns, or diagonals sum to the same number. Below is a $3 x 3$ heterosquare that actually took a long time to be discovered. Charles Trigg was the recreational mathematician who finally discovered it.

9	8	7
2	1	6
3	4	5

5. 4×4 heterosquares were in existence long before the $3 x 3$ heterosquare was discovered by Charles Trigg. Your challenge is to construct one of these 4×4 heterosquares.

4] The Perfect 5x5 Mayic Square

Rows, columns, diagonals, and broken diagonals all add up to the same magic sum in the perfect 5×5 magic square-shown with shaded master star.

1	15	24	8	17
23	7	16	5	14
20	4	13	22	6
12	21	10	19	3
9	18	2	11	25

Activity: Find the magic sum for this magic square. Find the total number of ways that rows, columns, diagonals, and broken diagonals add up to the magic sum.

4.1 Add Up Stars and Rhomboids

There are several new patterns associated with the 5×5 magic square where numbers total to the magic sum. These patterns are center stars, corner stars and the one master star. Representative center and corner stars are shown below. The master star is shaded in the 5×5 magic square shown above.

A Center Star

1	15	24	8	17
23	7	16	5	14
20	4	13	22	6
12	21	10	19	3
9	18	2	11	25

A Corner Star

1	15	24	8	17
23	7	16	5	14
20	4	13	22	6
12	21	10	19	3
9	18	2	11	25

Activity: Find the total number of additional ways the perfect $5 x 5$ magic square will add up to the magic sum by counting all corner stars, center stars, and the one master star. Be sure to check the magic sum for each star by "adding it up"!

In addition to stars, there are pretty rhomboids that also add up to the magic sum. Four representatives of these rhomboids are shown below. All rhomboids must include the number in the center (for a total of five numbers) in order to add up to the magic sum. The master star is sometimes called a 4×4 rhomboid. Also, the slanted 3×3 rhomboid is sometimes called a centered master star.

A Slanted 2x2 Rhomboid

1	15	24	8	17
23	7	16	5	14
20	4	13	22	6
12	21	10	19	3
9	18	2	11	25

Another Slanted 2x2 Rhomboid

1	15	24	8	17
23	7	16	5	14
20	4	13	22	6
12	21	10	19	3
9	18	2	11	25

One Slanted 3x3 Rhomboid

1	15	24	8	17
23	7	16	5	14
20	4	13	22	6
12	21	10	19	3
9	18	2	11	25

1	15	24	8	17
23	7	16	5	14
20	4	13	22	6
12	21	10	19	3
9	18	2	11	25

4.2 Challenges for Those in Grade School

1. Add up all the rhomboid patterns that total to the magic sum.
2. Add up all the patterns presented in this section: rows, columns, diagonals, broken diagonals, corner stars, center stars, the one master star, and various kinds of rhomboids.
3. Make a 5×5 magic square whose magic sum is 100 .
4. Can you find any other neat patterns where five numbers in the pattern add up to the magic sum?

4.3 Addditional Challenges for Those in Middle School

1. How many of the sum-of-squares equalities still hold with respect to rows, columns, and diagonals associated with our perfect 5×5 magic square?
2. How many additional sum-of-square equalities can you discover within our new "add-it-up" patterns?
3. Break the numbers 1 through 25 into five groups. Let the first group consist of the numbers $1,2,3,4,5$. Let the second group consist of the numbers $6,7,8$, 9,10 . In like fashion, form the third, forth, and fifth group. Show that every row, column, and main diagonal in the perfect 5×5 magic square contains exactly one number from each group.

4.4 Additional Challenges for Those in High School

1. Construct a 5×5 heterosquare.
2. There are 3600 different $5 x 5$ magic squares. Not all of them are as perfect as the one shown in this booklet. Create a pure 5×5 magic square that satisfies the basic requirements-rows, columns, and the two main diagonals add up-but fails to add up for at least one center star, corner star, rhomboid, etc.

5] A Nested 5x5 Magic Square

This 5×5 magic square has a shaded 3×3 square neatly tucked inside. The 5×5 magic square is a pure magic square whose rows, columns, and two main diagonals all "add up". The 3×3 square is also a magic square, but not a pure magic square since it uses numbers other than 1, 2, 3, 4, 5, 6, 7, 8, and 9 . However, the numbers used in the $3 x 3$ magic square are consecutive, starting with 9 and ending with 16-a wonder to behold!

1	18	21	22	3
2	10	17	12	24
18	15	13	11	8
21	14	9	16	5
23	7	6	4	25

Activity: For younger students, find the magic sum for the 3×3 magic square. For older students, how many "perfect properties" have been lost in this 5×5 magic square?

6] Ben Franklin's 8x8 Magic Square

Benjamin Franklin-American scientist, inventor, statesman, philosopher, economists, musician, and printer-invented this 8×8 magic square in his spare time. It is a pure magic square in that it utilizes the consecutive counting numbers from 1 to 64 . He also invented a 16×16 which is much too large to put in this little booklet.

14	3	62	51	46	35	30	19
52	61	4	13	20	29	36	45
11	6	59	54	43	38	27	22
53	60	5	12	21	28	37	44
55	58	7	10	23	26	39	42
9	8	57	56	41	40	25	24
50	63	2	15	18	31	34	47
16	1	64	49	48	33	32	17

Shown are two neat eight-number patterns embedded in Franklin's $8 x 8$ magic square. From these two patterns one can immediately spot two additional patterns (hint: the two additional patterns are two-tone patterns).

Activities

For younger students, find the magic sum for Franklin's $8 x 8$ magic square. Verify that all the rows, all the columns, and the two main diagonals indeed add up to the magic sum. How many ways is this?

For older students, explore the 8×8 magic square! Have a class contest to see who can discover the most eight-number patterns embedded in Franklin's 8x8 magic square. How many of the sum-of-squares properties are present in Franklin's $8 x 8$ magic square? If we partition the numbers 1 through 64 into eight consecutive groups-where the first group consists of the numbers 1 though 8, the second group 9 through 16, etc.-is there one and only one number present from each group in every row, column, and main diagonal?

7) A Nested 9x9 Mayic Square

This absolutely awesome pure $9 x 9$ magic square, invented by the French mathematician Bernard de Bessy in the 1600s, contains the following magic squares: a 3×3 magic square, a 5×5 magic square, and a 7×7 magic square. Admittedly, the smaller squares are not pure; but all of the squares will still add up to hours of fun and entertainment in your classroom!

16	81	79	78	77	13	12	11	2
76	28	65	62	61	26	27	18	6
75	23	36	53	51	35	30	59	7
74	24	50	40	45	38	32	58	8
9	25	33	39	41	43	49	57	73
10	60	34	44	37	42	48	22	72
14	63	52	29	31	47	46	19	68
15	64	17	20	21	56	55	54	67
80	1	3	4	5	69	70	71	66

Activities

For younger students, find the magic sum for all four squares. Find the total number of ways-rows, columns, and main diagonals-that the $3 x 3$ adds up to its magic sum, the 5×5 adds up to its magic sum, the 7×7 adds up to its magic sum, and the 9×9 adds up to its magic sum. Then, total the totals to get one big

Add It Up!

For older students, explore the 9×9 magic square asking the same questions that we have already asked. Have fun and add it up! One new thing: notice that the number in the middle of de Bessy's 9x9 magic square is 41, halfway between 1 and 81. Likewise, the number in the middle of a pure $5 x 5$ magic square is 13 , halfway between 1 and 25 . Our little $3 x 3$ magic square exhibits the same property. So what number do you think is in the middle of a pure 7×7 magic square, a pure 11×11 magic square, a pure 13×13 magic square?

8] Two Magic Squares for Reference

A 6x6 Magic Square

1	32	33	34	35	6
12	29	9	10	26	25
13	14	22	21	23	18
24	20	16	15	17	19
30	11	28	27	8	7
31	5	33	4	2	36

A 7x7 Magic Square

22	21	13	5	46	38	30
31	23	15	14	6	47	39
40	32	24	16	8	7	48
49	31	33	25	17	9	1
2	43	42	34	26	18	10
11	3	44	36	35	27	19
20	12	4	45	37	29	28

9] One Great Magic-Square Resource Book...brand new!

The Zen of Magic Squares, Circles, and Cubes; Clifford A. Pickover, Princeton University Press, 2002

