

The engineering behind industrial sorting processes

Objectives

- Learn about engineering of systems and about measurements
- Learn about sorting mechanisms
- Get an introduction to Performance Indices and measures of errors
- Learn about teamwork and cooperation

Sorting through History

Miners panning for gold

Quality control in food and other industries

Bottle sorting for recycling

Different Types of Sorting

 Image Processing for the operation of Casinos:

Off-the-shelf cameras,
frame grabbers, and
image-processing
software used to develop
a casino-coin sorting
system

Different Types of Sorting

- Material Properties of Coin:
 - Current run through left coil, creates magnetic field
 - Magnetic field passes through and is attenuated by coin
 - Right coil receives magnetic field, creates measurable current with different value depending on the coin

Why Coin Sorting is Needed

Mixed coins come from a variety
of sources and must
be sorted out before they
can be redistributed

Coins from vending machines

Coins from parking meters

Also helpful to identify fake or foreign coins

Why Coin Sorting is Needed

- Mixed coins are
 - Sorted
 - Rolled
 - Re-circulated through banks and businesses

Your Turn

- Groups of 2
- You are a team of engineers hired by a bank to develop a machine to sort coins that are brought in by customers.
- Must mechanically sort mixed coins into separate containers.
- In our experiment we use washers:
 - − ½ Inch
 - 1 Inch
 - 1¼ Inch
 - 1½ Inch

Parallel Sorter

Parallel Sorter

Serial Sorter

Input

Output

Performance Index 1: "Distance Index"

How good is it?

• 1: "Distance" performance index:

Distance from correct bin here,
$$D_{error} = 2$$
 bins

$$Index = \sqrt{\sum_{i} D_{error,i}^2} = \sqrt{4+1} \approx 2.24$$

• A washer that does not get sorted has maximum $D_{error} = 3$

+ Performance Index 2: "Percentage Index"

• 2: "Percentage" performance index:

Index =
$$\frac{\text{# of washers incorrectly identified}}{\text{Total # of washers to sort}} \times 100 = \frac{2}{40} \times 100 = 5\%$$

Table Number:					Type of Sorter	Serial
Team Name:						Parallel
# of this type in	Conta	iner for t	his size v	Total washers so	rted: 16	
each container	1/2"	<u>1"</u>	1 1/4"	1 1/2"		
1/2":					Number left unsc	orted:
1":					Distance Index:	
1 1/4":						
1 1/2":					Percentage Inde	x:

Table Number:		16			Type of Sorter Serial
Team Name:	The Perfect Group				Parallel
# of this type in	Container for this size washer:				Total washers sorted: 16
each container	<u>1/2"</u>	<u>1"</u>	1 1/4"	1 1/2"	
1/2":	4				Number left unsorted: 0
1":		4			Distance Index:
1 1/4":			4		
1 1/2":				4	Percentage Index: 0%

- Distance Performance Index
 - $sqrt(0x1^2 + 0x2^2 + 0x3^2) = 0$
 - A Perfect Score!
 - Remember: Lower is better
- Percentage Performance Index
 - $-(0/16) \times 100 = 0\%$
 - Another Perfect Score!

Table Number:		16			Type of Sorter Serial
Team Name:	Not	That P	Perfect		Parallel
# of this type in	Conta	iner for t	his size v	Total washers sorted: 16	
each container	<u>1/2"</u>	<u>1"</u>	<u>1 1/4"</u>	<u>1 1/2"</u>	
1/2":	4				Number left unsorted: 0
1":		4			Distance Index:
1 1/4":			4		'
1 1/2":			1	3	Percentage Index: 6.25%

- Distance Performance Index
 - $\operatorname{sqrt}(1x1^2 + 0x2^2 + 0x3^2) = 1$
 - A Less Than Perfect Score!
 - Remember: Lower is better
- Percentage Performance Index
 - $-(1/16) \times 100 = 6.25\%$
 - A Less Than Perfect Score!

Table Number:		16			Type of Sorter Serial
Team Name:	The	Truly I	Miseral	Parallel	
# of this type in	Conta	iner for t	his size v	Total washers sorted: 16	
each container	<u>1/2"</u>	<u>1"</u>	1 1/4"	1 1/2"	
1/2":	1	1	1	1	Number left unsorted: 2
1":		4			Distance Index: 6.16
1 1/4":	4				
1 1/2":				2	Percentage Index: 56%

1/2":	1	1	1	1	Number left unsorted: 2	
1":		4			Distance Index:	6.16
1 1/4":	4					
1 1/2":				2	Percentage Index:	56%

- Distance Performance Index
 - sqrt($1x1^2 + 1x2^2 + 4x2^2 + 1x3^2 + 2x3^2$) = 6.16
 - Much higher score, much lower performance
 - Remember: Lower is better
- Percentage Performance Index
 - $-(9/16) \times 100 = 56.25\%$
 - Again, much lower performance

Your Turn

Mechanical "shaking" of your device is allowed as part of its operation

- Design (draw) a mechanical sorter that can separate the ½in, 1in, 1¼in, 1½in washers
- Input: either
 - Parallel all 16 washers are inserted at start of your sorter together; or
 - Serial 16 washers are inserted at start of your sorter one at a time
- Output: Each size of washer in its own physical container or surface

- Materials:
 - glue, tape, paper or plastic plates, cardboard, scissors or hole punch, foil, paper, cardboard tubes
 - washers

Your Turn

- You will have 45 seconds to allow your sorter to operate
- Predict the value of the two performance indices for your design
- Construct your sorting mechanism
- Test it!
- Can you do better?

Mechanical "shaking" of your device is allowed as part of its operation

Conclusion

- Did your sorting mechanism work? If not, why did it fail?
- What were your performance index values?
- What levels of error would be acceptable in:
 - Medical Equipment manufacturing?
 - Nail manufacturing?
- What redesigns were necessary when you went to construct your design? Why?